新型双向储能变流器分析与研究

张耀文, 张政权, 刘庆想, 欧伟丽

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 82-89.

PDF(3291 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3291 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 82-89. DOI: 10.19912/j.0254-0096.tynxb.2020-0183
电化学储能安全性与退役动力电池梯次利用关键技术专题

新型双向储能变流器分析与研究

  • 张耀文, 张政权, 刘庆想, 欧伟丽
作者信息 +

ANALYSIS AND RESEARCH OF NEW BIDIRECTIONAL ENERGY STORAGE CONVERTER

  • Zhang Yaowen, Zhang Zhengquan, Liu Qingxiang, Ou Weili
Author information +
文章历史 +

摘要

传统双级式储能变流器存在直流支撑电容,电能需多次变换从而导致变换器故障、可靠性降低和效率降低。针对此问题,提出一种基于高频交流链接技术的新型双向储能变流器。首先对该变流器的工作原理进行详细介绍,在此基础上依据电荷分配的思想提出一种可行的控制算法,并建立Matlab/Simulink仿真模型对该拓扑结构和控制算法进行验证。仿真结果表明,该拓扑结构在离/并网模式下均可得到稳定的输出波形,功率因数大于0.99,且总谐波含量THD小于3%,可应用于光-储微网与光伏发电系统协同工作,有效抑制光伏发电系统带来的功率波动。

Abstract

The traditional two-stage energy storage converter has a DC support capacitor, and the electric energy needs to be converted multiple times, which leads to converter failure, reduced reliability and efficiency. To solve this problem, a new bidirectional energy storage converter based on high frequency AC link technology is proposed. The working principle of the converter is introduced in detail in this paper. On this basis, a feasible control algorithm is proposed based on the idea of charge distribution, and a Matlab/Simulink simulation model is established to verify the topology and control algorithm. Simulation results show that the topology can obtain stable output waveforms in off/grid mode, with a power factor greater than 0.99 and THD less than 3%. It can be applied to the cooperative work of the optical / storage microgrid and photovoltaic power generation system to effectively suppress photovoltaics Power fluctuations caused by the power generation system.

关键词

光伏发电 / 光储微电网 / 电路谐振 / 交流链接技术 / 离/并网

Key words

photovolatic power generation / PV-storage microgrid / circuit resonance / AC-link / grid-connected/off-grid

引用本文

导出引用
张耀文, 张政权, 刘庆想, 欧伟丽. 新型双向储能变流器分析与研究[J]. 太阳能学报. 2022, 43(4): 82-89 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0183
Zhang Yaowen, Zhang Zhengquan, Liu Qingxiang, Ou Weili. ANALYSIS AND RESEARCH OF NEW BIDIRECTIONAL ENERGY STORAGE CONVERTER[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 82-89 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0183
中图分类号: TM46   

参考文献

[1] UMMELS B C, GIBESCU M, PELGRUM E, et al. Impacts of wind power on thermal generation unit commitment and dispatch[J]. IEEE transactions on energy conversion, 2007, 22(1): 44-51.
[2] 吴俊玲, 吴畏, 周双喜.超导储能改善并网风电场稳定性的研究[J]. 电工电能新技术, 2004, 23(3): 59-63.
WU J L, WU W, ZHOU S X.Research on superconducting energy storage to improve the stability of grid-connected wind farms[J]. New technology of electrical engineering and energy, 2004, 23(3): 59-63.
[3] 唐西胜, 武鑫, 齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J]. 太阳能学报, 2007, 28(2):178-183.
TANG X S, WU X, QI Z P.Research on hybrid photovoltaic energy storage independent photovoltaic system of supercapacitor[J]. Acta energiae solaris sinica, 2007, 28(2): 178-183.
[4] 唐西胜, 邓卫, 李宁宁, 等. 基于储能的可再生能源微网运行控制技术[J]. 电力自动化备, 2012, 32(3): 99-103, 108.
TANG X S, DENG W, LI N N, et al. Renewable energy microgrid operation control technology based on energy storage[J]. Electric power automation equipment, 2012, 32(3): 99-103, 108.
[5] 左文霞, 李澍森, 吴夕科, 等. 微电网技术及发展概况[J]. 中国电力, 2009, 42(7): 26-30.
ZUO W X, LI S S, WU X K, et al. Overview of microgrid technology and development[J]. China electric power, 2009, 42(7): 26-30.
[6] 张春雪, 黎灿兵, 冯伟, 等. 孤立运行光/储微电网中储能变流器暂态功率波动协调抑制策略[J]. 中国电机工程学报, 2018, 38(8): 2302-2314, 2540.
ZHANG C X, LI C B, FENG W, et al. A coordinated transient power fluctuation suppression strategy for power conversion system in islanded PV/storage microgrid[J]. Proceedings of t he CSEE, 2018, 38(8): 2302-2314, 2540.
[7] CHAKRABORTY S, KRAMER B, KROPOSKI B.A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design[J]. Renewable and sustainable energy reviews, 2009, 13(9): 2323-2335.
[8] WU T, ZHANG Y J, TANG X W.A VSC-based BESS model for multi-objective OPF using mixed integer SOCP[J]. IEEE transactions on power systems, 2019, 34(4): 2541-2552.
[9] 周强.用于削峰填谷的储能变流器研究[D]. 淮南: 安徽理工大学, 2018.
ZHOU Q.Research on energy storage converters used to cut peaks and fill valleys[D]. Huainan: Anhui University of Science and Technology, 2018.
[10] KARANAYIL B, AGELIDIS V G, POU J.Performance evaluation of three-phase grid-connected photovoltaic inverters using electrolytic or polypropylene film capacitors[J]. IEEE transactions on sustainable energy, 2014, 5(4): 1297-1306.
[11] XU Q W, XU Y, TU P F, et al. Systematic reliability modelling and evaluation for on-board power systems of more electric aircrafts[J]. IEEE transactions on power systems, 2019, 34(4): 3264-3273.
[12] SAMPAIO L, DE BRITO M, MELO G, et al. Three-phase tri-state buck-boost integrated inverter for solar applications[J]. IET renewable power generation, 2015, 9(6): 557-565.
[13] KAMALIRAD M, IMAN-EINI H, FARHANGI B, et al. A reliable three-phase transformerless grid-connected PV inverter with inductive DC link[J]. IEEE journal of photovoltaics, 2018, 8(5): 1305-1312.
[14] GAO F, LIANG C, LOH P C, et al. Buck-boost current-source inverters with diode-inductor network[J]. IEEE transactions on industry applications, 2009, 45(2):794-804.
[15] BHAT A K S, DEWAN S B.A novel utility interfaced high-frequency link photovoltaic power conditioning system[J]. IEEE transactions on industrial electronics, 1988, 35(1):153-159.
[16] HADDADI A M, FARHANGI S, BLAABJERG F.An isolated bidirectional single-stage inverter without electrolytic capacitor for energy storage systems[J]. IEEE journal of emerging and selected topics in power electronics, 2019, 7(3): 2070-2080.
[17] ZHANG Z Q,LIU Q X,WU Z P,et al. Design and implementation of a HF AC-Link capacitor charging power supply[C]//International Conference on Artificial Intelligence, Management Science and Electronic Commerce, IEEE, Dengfeng, China, 2011.
[18] 武靖昊, 刘庆想, 张政权, 等. 双同步坐标系锁相环在AC-LINK充电电源中的应用[J]. 强激光与粒子束, 2018, 30(5): 57-61.
WU J H, LIU Q X, ZHANG Z Q, et al. Application of dual synchronous coordinate phase-locked loop in AC-link charging power supply[J]. Intense laser and particle beams, 2018, 30(5): 57-61.
[19] 张政权, 刘庆想, 李伟, 等. 基于AC-Link 技术串联谐振充电电源实验研究[J]. 电力电子技术, 2014, 48(12): 38-40.
ZHANG Z Q, LIU Q X, LI W, et al. Experimental study of series resonant charging power supply based on AC-link technology[J]. Power electronics, 2014, 48(12): 38-40.
[20] 张政权, 刘庆想, 李伟, 等. 基于AC-Link 技术串联谐振高压充电电源串并联特性研究[J]. 微波学报, 2014, 30(S1): 514-516.
ZHANG Z Q, LIU Q X, LI W, et al. Study on series-parallel characteristics of series resonant high-voltage charging power supply based on AC-link technology[J]. Journal of microwaves, 2014, 30(S1): 514-516.
[21] LI W, LIU Q X, ZHANG Z Q, et al. High power factor high power density high voltage converter based on AC link[J]. IET power electronics, 2017, 10(7): 826-834.
[22] LI W, LIU Q X, ZHANG Z Q.High power density high voltage power supply based on AC-link[C]//Society of Instrument and Control Engineers of Japan, IEEE, Hangzhou, China, 2015: 848-855.
[23] 李伟, 刘庆想, 张政权,等. 基于高频交流链接技术的大功率高压直流电源[J]. 电工技术学报, 2016, 31(16): 65-71.
LI W, LIU Q X, ZHANG Z Q,et al. High power high voltage DC power supply based on high frequency AC link technology[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 65-71.
[24] 李伟, 刘庆想, 张政权.恒功率输入与恒流输出的电容器充电电源[J]. 强激光与粒子束, 2016, 28(7):075003/1-075003/5.
LI W, LIU Q X, ZHANG Z Q.Capacitor charging power supply for constant power input and constant current output[J]. High power laser and particle beams, 2016, 28(7): 075003/1-075003/5.
[25] 张政权, 刘庆想, 李相强, 等. 高频交流链接技术充电[J]. 强激光与粒子束, 2012, 24(3): 719-722.
ZHANG Z Q, LIU Q X, LI X Q, et al. High-frequency AC link technology charging power supply[J]. Intense laser and particle beams, 2012, 24(3): 719-722.
[26] 张政权, 刘庆想, 王庆峰, 等. 高频AC-Link高压充电电源[J]. 电源学报, 2017, 15(4): 125-130.
ZHANG Z Q, LIU Q X, WANG Q F, et al. High frequency AC-link high voltage charging power supply[J]. Journal of power sources, 2017, 15(4): 125-130.

基金

中央高校基本科研业务费专项(2682018CX30)

PDF(3291 KB)

Accesses

Citation

Detail

段落导航
相关文章

/