AERODYNAMIC SHAPE OPTIMIZATION OF WIND TURBINE AIRFOIL BASED ON LOW SPEED PRECONDITIONING
Wang Qing1,2, Zhang Min1,2, Li Deshun1,2, Li Shoutu1,2
Author information+
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Wind Energy Technology Research Center of Gansu Province, Lanzhou 730050, China
In this research, the airfoil aerodynamic shape optimization aiming to improve the lift-drag ratio is performed based on the S809 airfoil by employing the sequential quadratic programming method and low speed preconditioning method. The optimized airfoil has large leading edge radius and flat upper surface. The simulated results indicated that the lift-drag ratio is increased about 43.3% at design state 1, and increased about 48.9% at design state 2. Further numerical verifications indicate that the maximum lift coefficient is increased from 1.140 to 1.297 at Reynolds number of 5.0×105, and increased from 1.236 to 1.418 at Reynolds number of 1.0×106. Based on the optimized airfoil, a research of artificial modification is performed in this research to restrict the aerodynamic separation. The numerical results indicated that the modified airfoil has larger lift coefficient and smaller drag coefficient.
Wang Qing, Zhang Min, Li Deshun, Li Shoutu.
AERODYNAMIC SHAPE OPTIMIZATION OF WIND TURBINE AIRFOIL BASED ON LOW SPEED PRECONDITIONING[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 351-358 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0441
中图分类号:
TK81
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LE GOURIERES D.Wind power plants: theory and design[M]. Elsevier, Pergamon Press, Oxford, 1982. [2] HANSEN M O L. Aerodynamics of wind turbines[M]. Routledge, London Sterling, VA, 2013. [3] TIMMER W A.An overview of NACA 6-Digit airfoil series characteristics with reference to airfoils for large wind turbine blades[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009. [4] TANGLER J L, SOMERS D M.Status of the special-purpose airfoil families[C]//Proceedings of Wind Power, San Francisco, USA, 1987: 229-335. [5] TANGLER J L, SOMERS D M.NREL airfoil families for HAWTs[R]. National Renewable Energy Laboratory, AWEA, 1995. [6] TIMMER W A, van ROOIJ R P J O M. Summary of the Delft University wind turbine dedicated airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 488-496. [7] FUGLSONG P, BAK C.Development of the Risø wind turbine airfoils[J]. Wind energy, 2004, 7(2): 145-162. [8] FUGLSONG P, BAK C, GAUUAA M, et al.Design and verification of the new Risø-B1 airfoil family for wind turbines[J]. Journal of solar energy engineering, 2004, 126(4): 1002-1010. [9] FUGLSONG P, ANTONIOU I, KRISTIAN D.Wind tunnel tests of the FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils[R]. Denmark: Risø National Laboratory, 1998. [10] 琚亚平, 张楚华. 基于人工神经网络与遗传算法的风力机翼型优化设计方法[J]. 中国电机工程学报, 2009, 29(20): 106-111. JU Y P, ZHANG C H.Optimal design method for wind turbine airfoil based on artificial neural network model and genetic algorithm[J]. Proceedings of the CSEE, 2009, 29(20): 106-111. [11] 黄意坚, 宋文萍, 韩忠华, 等. 平底后缘风力机翼型的优化设计[J]. 太阳能学报, 2015, 36(10): 2442-2447. HUANG Y J, SONG W P, HAN Z H, et al.Design and numerical optimization of flatback airfoils[J]. Acta energiae solaris sinica, 2015, 36(10): 2442-2447. [12] 余莉, 呼政魁, 程涵, 等. 风力机翼型的多学科设计优化[J]. 南京航空航天大学学报, 2011, 43(5): 697-700. YU L, HU Z K, CHENG H, et al.Multidisciplinary design optimization for wind turbine airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5): 697-700. [13] 汪泉, 陈进, 王君, 等. 基于连续攻角的风力机翼型整体气动性能提高的优化设计[J]. 机械工程学报, 2017, 53(13): 143-149. WANG Q, CHEN J, WANG J, et al.Wind turbine airfoil optimal design with high whole aerodynamic performance considering continuous angle of attack[J]. Journal of mechanical engineering, 2017, 53(13): 143-149. [14] 刘华威, 吴永忠, 张朋杨, 等. 基于自适应模拟退火遗传算法的风力机翼型优化设计[J]. 可再生能源, 2018, 36(6): 929-934. LIU H W, WU Y Z, ZHANG P Y, et al.Research on adaptive simulated annealing genetic algorithm in wind turbine airfoil optimization design[J]. Renewable energy resources, 2018, 36(6): 929-934. [15] 白井艳, 杨科, 李宏利, 等. 水平轴风力机专用翼型族设计[J]. 工程热物理学报, 2010, 31(4): 589-592. BAI J Y, YANG K, LI H L, et al.Design of the horizontal axis wind turbine airfoil family[J]. Journal of engineering thermophysics, 2010, 31(4): 589-592. [16] 白井艳, 杨科, 徐建中. 水平轴风力机专用翼型族试验分析及优化设计[J]. 工程热物理学报, 2011, 32(7): 1131-1136. BAI J Y, YANG K, XU J Z.The experimental analysis and optimal design of thin airfoil family for horizontal-axis wind turbines[J]. Journal of engineering thermophysics, 2011, 32(7): 1131-1136. [17] BLAZEK J.Computational fluid dynamics principles and applications[M]. Second Edition, Elsevier, UK, 2003. [18] WEISS J M, SMITH W A.Preconditioning applied to variable and constant density flows[J]. AIAA journal, 1995, 33(11): 2050-2057. [19] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605. [20] THOMPSON J F.Grid generation techniques in computational fluid dynamics[J]. AIAA journal, 1984, 22(11): 1505-1523. [21] SOMERS D M.Design and experimental results for the S809 airfoil[R]. NREL/SP-440-6918, 1997. [22] BOGUE D, CRIST N.CST transonic optimization using tranair++[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008. [23] CEZE M, HAYASHI M, VOLPE E.A study of the CST parameterization characteristics[C]//27th AIAA Applied Aerodynamics Conference, San Antonio, 2009.