提出一种基于图形特征的风力机轴承剩余使用寿命(RUL)预测方法。首先,基于连续小波变换(CWT)对时域振动数据样本集进行预处理,得到用于预测的时频图形数据集。然后,采用双输入卷积神经网络(DICNN)从图形数据集中提取特征映射,用于构造高性能健康指数(DICNN-HI)来表征轴承各退化阶段的状态。最后,结合DICNN-HI,采用基于高斯过程回归(GPR)的分析方法进行RUL预测,并用PRONOSTIA滚动轴承数据集进行验证。结果表明,该方法具有较高的健康指数预测精度,能有效反映滚动轴承的劣化状态,有助于实现风力机轴承的RUL预测。同时,也可为其他旋转机械设备的剩余寿命预测提供重要的理论参考,具有一定的实用价值。
Abstract
A graphical features based remaining useful life (RUL) prognosticating method for the bearings in wind turbine is proposed in this paper. Firstly, preprocessing the time-domain vibration data sample set based on continuous wavelet transform (CWT) to obtain the time-frequency graphical data set used for prognosticating work. Secondly, dual-input convolutional neural network (DICNN) is employed to extract the feature map from the graphical data set to construct high performance health indicator (DICNN-HI) for representing the state of each degradation stage of the bearing. Finally, according to the predicted DICNN-HI, a Gaussian process regression (GPR)-based analysis is used for RUL prognosticating, which is verified by the PRONOSTIA ball bearing data set. Results illustrate that the proposed method has a high prediction accuracy of health indicator to map the state of degradation of a bearing effectively, which is helpful to realize the RUL prognosticating accurately in this study. It provides an important theoretical reference for RUL prognosticating of bearing and the other rotating machineries, as well as a certain practical value.
关键词
风力机轴承 /
双输入卷积神经网络 /
图形特征 /
剩余使用寿命 /
预测
Key words
wind turbine bearing /
dual-input convolutional neural network /
graphical features /
remaining useful life /
prognosticating
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEI Y.Intelligent fault diagnosis and remaining useful life prediction of rotating machinery || remaining useful life prediction[M]. UK: Elsevier Butterworth-Heinemann, 2017: 281-358.
[2] 赵洪山, 张健平, 高夺, 等. 风机齿轮箱轴承状态评估与剩余寿命预测[J]. 中国电力, 2017, 50(4): 141-145.
ZHAO H S, ZHANG J P, GAO D, et al.Condition assessment and residual life prediction for gearbox bearing of wind turbine[J]. Electric power, 2017, 50(4): 141-145.
[3] 孙磊, 贾云献, 蔡丽影, 等. 粒子滤波参数估计方法在齿轮箱剩余寿命预测中的应用研究[J]. 振动与冲击, 2013, 32(6): 6-12.
SUN L, JIA Y X, CAI L Y, et al.Residual useful life prediction of gearbox based on particle filtering parameter estimation method[J]. Journal of vibration and shock, 2013, 32(6): 6-12.
[4] YANG Z X, ZHANG P B.ELM meets RAE-ELM: a hybrid intelligent model for multiple fault diagnosis and remaining useful life predication of rotating machinery[C]//2016 International Joint Conference on Neural Networks, Vancouver, BC, Canada, 2016: 2321-2328.
[5] XUE X L, HU Y Y, QI S.Remaining useful life estimation for proton exchange membrane fuel cell based on extreme learning machine[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation, Wuhan, China, 2016.
[6] SUN C, MA M, ZHAO Z B, et al.Deep transfer learning based on sparse auto-encoder for remaining useful life prediction of tool in manufacturing[J]. IEEE transactions on industrial informatics, 2019, 15(4): 2416-2425.
[7] CHENG C, MA G J, ZHANG Y, et al.A deep learning-based remaining useful life prediction approach for bearings[J]. IEEE/ASME transactions on mechatronics, 2020, 25(3): 1243-1254.
[8] LI X, DING Q, SUN J Q.Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability engineering & system safety, 2018, 172: 1-11.
[9] YOO Y, BAEK J-G.A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network[J]. Applied sciences, 2018, 8(7): 1102.
[10] DEUTSCH J, HE D.Using deep learning-based approach to predict remaining useful life of rotating components[J]. IEEE transactions on systems, man, and cybernetics, 2018, 48(1): 11-20.
[11] ZHANG C, LIM P, QIN A K, et al.Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE transactions on neural networks and learning systems, 2017, 28(10): 2306-2318.
[12] TV V, GUPTA P, MALHOTRA P, et al.Recurrent neural networks for online remaining useful life estimation in ion mill etching system[C]//Proceedings of the Annual Conference of the Prognostics and Health Management society, Philadelphia, USA, 2018: 1-10.
[13] ZHENG S, RISTOVSKI K, FARAHAT A, et al.Long short-term memory network for remaining useful life estimation[C]//2017 IEEE International Conference on Prognostics and Health Management, Dallas, TX, USA, 2017.
[14] WANG F T, LIU X F, DENG G, et al.Remaining life prediction method for rolling bearing based on the long short-term memory network[J]. Neural processing letters, 2019, 50(3): 2437-2454.
[15] HINCHI A Z, TKIOUAT M.Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia computer science, 2018, 127:123-132.
[16] ELLEFSEN A L, BJØRLYKHAUG E, ÆSØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability engineering and system safety, 2019, 183: 240-251.
[17] MALHOTRA P, TV V, RAMAKRISHNAN A, et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder[J]. https://doi.org/10.48550/arXiv.1608.06154, 2016.
[18] MISRA D.Mish: a self regularized non-monotonic neural activation function[J]. https://doi.org/10.48550/arXiv. 1908.08681, 2020.
[19] LEI Y G, LI N P, GUO L L, et al.Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical systems and signal processing, 2018, 104: 799-834.
[20] SUTRISNO E, OH H, VASAN A S S, et al. Estimation of remaining useful life of ball bearings using data driven methodologies[C]//2012 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 2012: 1-7.
[21] LEI Y G, LI N P, GONTARZ S, et al.A model-based method for remaining useful life prediction of machinery[J]. IEEE transactions on reliability, 2016, 65(3): 1314-1326.
基金
国家自然科学基金(61763028; 61563032; 61963025); 甘肃省自然科学基金(1506RJZA104)