CO2爆破致裂工艺为建造商业化EGS储层提供了新方案,有望突破深层地热能行业发展的技术瓶颈,但目前未见CO2致裂技术用于干热岩系统的综合性能评价研究。基于此研究不足,借助数学建模定量科学评价其综合性能,解决此技术效果的不确定性和模糊性,填补深井地热系统综合评价体系的空白。考虑到深井CO2爆破干热岩系统是一个多变、模糊、复杂的非线性系统,该文选取AHP-FCE优化数学模型,AHP对深井爆破干热岩系统复杂问题分层,构建递阶层次结构,通过Matlab将专家的定性判断定量化,进而确定FCE中各层评价指标权重大小,再通过FCE模糊关系合成原理,对多因素影响下的深井CO2爆破致裂干热岩系统综合评分为83.36,预评价结果为较好,可考虑将CO2爆破致裂器用于干热岩开采。评定结果可作为深井CO2爆破致裂干热岩建设过程中的数据支撑,为地热开采工程提供一定的理论依据。
Abstract
The process of CO2 blasting-cracking provides a new scheme for the construction of commercial EGS reservoir,which is expected to make a breakthrough in the deep geothermal energy development. However, the comprehensive performance of the syetem for cracking hot dry rock by CO2 blasting technology in deep well (SCBH) has not been studied yet. Based on this research deficiency, its comprehensive performance was quantitatively and scientifically evaluated by mathematical modelling to solve the uncertainty and ambiguity of the effect of this technology and fill the gap in the comprehensive evaluation system of deep well geothermal system. Considering that the SCBH is a nonlinear system with variations,fuzzy and complex. In this paper,AHP-FCE optimization mathematical model was selected,AHP stratifies the complex problem of the SCBH and constructs a hierarchical structure. The qualitative judgment of experts was quantified through Matlab, and the weight of evaluation indexes of each layer in FCE was determined.Then based on the FCE fuzzy relation synthesis principle,the comprehensive score of the SCBH under the influence of multiple factors is 83.36. The pre-evaluation result is better. Therefore, CO2 blasting crackers may be considered for hot dry rock mining. The evaluation results can be used as data support for the technology of CO2 blasting-cracking to constructe the hot dry rock reservoir,and provide theoretical basis for geothermal mining projects.
关键词
地热能 /
CO2爆破 /
干热岩系统 /
数学模型 /
评价
Key words
geothermal energy /
CO2 blasting /
hot dry rock systems /
mathematical model /
evaluation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(12): 111-117, 121.
CHEN J L, JIANG F M.Numerical simulation analysis of thermal exploitation performance of enhanced geothermal system[J]. Renewable energy, 2013, 31(12): 111-117, 121.
[2] TESTER J W, ANDERSON B J, BATCHELOR A S, et al.The future of geothermal energy[M]. Massachusetts: Massachusetts Institute of Technology, 2006.
[3] BERTANI R.Geothermal power generation in the world 2005-2010 update report[J]. Geothermics, 2012, 41: 1-29.
[4] 许天福, 张彦军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45.
XU T F, ZHANG Y J, ZENG Z F, et al.Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & technology review, 2012, 30(32): 42-45.
[5] 王帅. 干热岩储层化学激发机理及其物理力学演变规律研究[D]. 太原: 太原理工大学, 2019.
WANG S.Study on chemical excitation mechanism and physical and mechanical evolution rule of dry hot rock reservoirs[D]. Taiyuan: Taiyuan University of Technology, 2019.
[6] 罗天雨, 刘全稳, 刘元爽. 干热岩压裂开发技术现状及展望[J]. 中外能源, 2017, 22(10): 23-27.
LUO T Y, LIU Q W, LIU Y S.Present situation and on hydraulic fracturing development technique of hot dry rock[J]. China and foreign energy, 2017, 22(10): 23-27.
[7] WEI N, Li X C, Fang Z M, et al.Regional resource distribution of onshore carbon geological utilization in China[J]. Journal of CO2 utilization, 2015, 11: 20-30.
[8] 宋阳, 吴晓敏, 胡珊, 等. 二氧化碳在干热岩中换热及固化的数值模拟[J]. 工程热物理学报, 2013, 34(10): 1902-1905.
SONG Y, WU X M, HU S, et al.Numerical simulation of heat transfer and sequestration of CO2 in hot-dry-rock[J]. Journal of engineering thermophysics, 2013, 34(10): 1902-1905.
[9] WANG C L, CHENG W L, NIAN Y L, et al.Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration[J]. Energy, 2018, 142: 157-167.
[10] LUO F, XU R N, JIANG P X.Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)[J]. Energy, 2014, 64: 307-322.
[11] PRUESS K.Enhanced geothermal systems (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4) : 351-367.
[12] ZHANG L, LUO F, XU R N, et al.Heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system with local thermal non-equilibrium model[J]. Energy procedia, 2014, 63: 7644-7650.
[13] 徐超, 窦斌, 田红, 等. 二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J]. 地质科技情报, 2019, 38(5): 247-252.
XU C, DOU B, TIAN H, et al.Process of carbon dioxide blasting to build EGS thermal reservoir[J]. Geological science and technology information, 2019, 38(5): 247-252.
[14] 周磊. 台阶爆破效果评价及爆破参数优化研究[D].武汉: 武汉理工大学, 2012.
ZHOU L.Effect evaluation of step blasting and study on blasting parameter optimization[D]. Wuhan: Wuhan University of Technology, 2012.
[15] ZHANG J H.Combination evaluation method of Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation based on yaahp[EB/OL]. Available: March 25, 2015.
[16] 赵伏军, 谢世勇, 杨磊, 等. 基于层次分析法—模糊综合评价(AHP-FCE)模型优化矿井通风系统的研究[J]. 中国安全科学学报, 2006, 16(4): 91-96.
ZHAO F J, XIE S Y, YANG L, et al.Study on optimization of mine ventilation system based onAHP-FCE model[J]. Chinese journal of safety sciences, 2006, 16(4): 91-96.
[17] SAATY T L.The analytic hierarchy process: Planning, priority setting, resource allocation[M]. New York: McGraw-Hill, 1980.
[18] BROWN D W, DUCHANE D V, HEIKEN G, et al.Mining the earth’s heat: Hot dry rock geothermal energy[M]. Berlin: Spring-Verlag, 2012.
[19] 周文骏, 谭凯旋, 寇子顺, 等. 基于AHP-Fuzzy法的井下采场深孔爆破落矿效果综合评价[J]. 铀矿冶, 2016, 35(3): 170-174.
ZHOU W J, TAN K X, KOU Z S, et al.Comprehensive evaluation of ore break down in underground stope by deep-hole blasting effect based on AHP-fuzzy method[J]. Uranium mining and metallurgy, 2016, 35(3): 170-174.
[20] 褚林配. 地热供能系统综合效益指标评价体系研究[D]. 天津: 河北工业大学, 2015.
CHU L P.Study on evaluation system of comprehensive benefit index of geothermal energy supply system[D]. Tianjin: Hebei University of Technology, 2015.
[21] 刘骏锋. 基于实测数据的综合能源系统综合评价[D]. 北京: 北京交通大学, 2019.
LIU J F.Comprehensive evaluation of integrated energy system based on measured data[D]. Beijing: Beijing Jiaotong University, 2019.
基金
国家自然科学基金(41674180; 41602374); 中国地质大学(武汉)实验技术研究项目(SJ-201811)