基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究

王宏伟, 孙文磊, 张小栋, 何丽

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 288-295.

PDF(2644 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2644 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 288-295. DOI: 10.19912/j.0254-0096.tynxb.2020-0457
电化学储能安全性与退役动力电池梯次利用关键技术专题

基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究

  • 王宏伟1, 孙文磊1, 张小栋2, 何丽1
作者信息 +

FAULT DIAGNOSIS METHOD OF WIND TURBINE’S GEARBOX BASED ON COMPOSITE MULTISCALE DISPERSION ENTROPY OF OPTIMISED VMD AND LSTM

  • Wang Hongwei1, Sun Wenlei1, Zhang Xiaodong2, He Li1
Author information +
文章历史 +

摘要

以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。首先将时域信号转换至角域;然后通过AGWO-VMD方法对角域信号进行自适应分解,并采用NCMDE算法提取分解后及原始信号中的故障特征构成特征向量;最后利用LSTM模型对特征向量进行智能识别与分类。对实际采集的6种故障齿轮信号进行测试与验证,试验结果表明该方法能快速有效区分齿轮故障类型。

Abstract

A data driven diagnosis method based on acceleration signals for the gearbox in wind turbine is proposed, which on the basis of the grey wolves optimised variational modal decomposition (AGWO-VMD), normalized composite multiscale dispersion entropy (NCMDE) and long short-term memeory (LSTM), the gearbox faults diagnosis is realized rapidly. Firstly, the discrete signal in time domain is converted to angular domain. Secondly, AGWO-VMD algorithm is used to decompose the signal adaptively, and NCMDE algorithm is used to extract fault features as feature vectors from both original and decomposed signals. At last, the LSTM model is used for intelligentive classification of feature vectors. The proposed method is validated by 100 groups of data under 6 types of faults collected from WTDS, and the result shows that , it can recognize the right type of gearbox's fault rapidly and effectively.

关键词

风力机 / 齿轮箱 / 故障检测 / 灰狼优化算法 / 变分模态分解 / 复合多尺度规范化散布熵 / 长短期记忆网络

Key words

wind turbines / gearbox / fault detection / grey wolf optimizer / variational modal decomposition / normalized composite multiscale dispersion entropy / long short-term memeory network

引用本文

导出引用
王宏伟, 孙文磊, 张小栋, 何丽. 基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究[J]. 太阳能学报. 2022, 43(4): 288-295 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0457
Wang Hongwei, Sun Wenlei, Zhang Xiaodong, He Li. FAULT DIAGNOSIS METHOD OF WIND TURBINE’S GEARBOX BASED ON COMPOSITE MULTISCALE DISPERSION ENTROPY OF OPTIMISED VMD AND LSTM[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 288-295 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0457
中图分类号: TH133.1   

参考文献

[1] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert Spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of Royal Society of London, 1998, 454(1971): 903-995.
[2] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 32(3): 531-544.
[3] 李志农, 朱明.基于变分模态分解的机械故障诊断方法研究[J]. 兵工学报, 2017, 38(3): 593-599.
LI Z N, ZHU M.Research on mechanical fault diagnosis method based on variational mode decomposition[J]. Acta armamentarii, 2017, 38(3): 593-599.
[4] 李宏坤, 侯梦凡, 唐道龙, 等. 基于POVMD和CAF的低转速齿轮箱故障诊断[J]. 振动、测试与诊断, 2020, 40(1): 35-42.
LI H K, HOU M F, TANG D L, et al. Low speed gearbox fault diagnosis based on POVMD and CAF[J]. Journal of vibration, measurement & diagnosis, 2020, 40(1): 35-42.
[5] 焦博隆, 钟志贤, 刘翊馨, 等. 基于蝙蝠算法优化的变分模态分解的转子裂纹检测方法[J]. 振动与冲击, 2020, 39(6): 98-103, 124.
JIAO B L, ZHONG Z X, LIU Y X, et al. Rotor crack detection method based on variational mode decomposition based on optimization parameters of bat algorithm[J]. Journal of vibration and shock, 2020, 39(6): 98-103,124.
[6] 张淑清, 李盼, 胡永涛, 等. 多重分形近似熵与减法FCM聚类的研究及应用[J]. 振动与冲击, 2015, 34(18): 205-209.
ZHANG S Q, LI P, HU Y T, et al. Application of multifractal approximate entropy and subtractive FCM clustering in gearbox fault diagnosis[J]. Journal of vibration and shock, 2015, 34(18): 205-209.
[7] 王广斌, 杜谋军, 韩清凯, 等. 基于多尺度子带样本熵和LPP的轴承故障诊断方法[J]. 振动与冲击, 2016, 35(20): 71-76, 97.
WANG G B, DU M J, HAN Q K, et al. A bearing fault diagnosis method based on multi-scal sub-band sample entropy and LPP[J]. Journal of vibration and shock, 2016, 35(20): 71-76, 97.
[8] 郑近德, 姜战伟, 代俊习, 等. 基于VMD的自适应复合多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 航空动力学报, 2017, 32(7): 1683-1689.
ZHENG J D, JIANG Z W, DAI J X, et al. VMD based adaptive composite multiscale fuzzy entropy and its application to fault diagnosis of rolling bearing[J]. Journal of aerospace power, 2017, 32(7): 1683-1689.
[9] 郑近德, 潘海洋, 程军圣, 等. 基于复合多尺度模糊熵的滚动轴承故障诊断方法[J]. 振动与冲击, 2016, 35(8): 116-123.
ZHENG J D, PAN H Y, CHENG J S, et al. Composite mutil-scale fuzzy entropy based rolling bearing fault diagnosis method[J]. Journal of vibration and shock, 2016, 35(8): 116-123.
[10] ROSTAGHI M, AZAMI H.Dispersion entropy: a measure for time series snalysis[J]. IEEE signal processing letters, 2016, 23(5): 610-614.
[11] 付文龙, 谭佳文, 王凯.基于VMD散布熵与改进灰狼优化SVDD的轴承半监督故障诊断研究[J]. 振动与冲击, 2019, 38(22): 190-197.
FU W L, TAN J W, WANG K.Semi-supervised fault diagnosis of bearings based on the VMD dispersion entropy and improved SVDD with modified gre wolf optimizer[J]. Journal of vibration and shock, 2019, 38(22): 190-197.
[12] 皮骏, 马圣, 杜旭博, 等. 基于BQGA-ELM网络在滚动轴承故障诊断中的应用研究[J]. 振动与冲击, 2019, 38(18): 192-200.
PI J, MA S, DU X B, et al. Application of BAGA-ELM network in the fault diagnosis of rolling bearings[J]. Journal of vibration and shock, 2019, 38(18): 192-200.
[13] 于洋, 何明, 刘博, 等. 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40(5): 51-59.
YU Y, HE M, LIU B, et al. Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese journal of scientific instrument, 2019, 40(5): 51-59.
[14] MIRJALILI S, MIRJALILI S M, ANDREW L.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[15] 魏昱洲, 许西宁.基于LSTM长短期记忆网络的超短期风速预测[J]. 电子测量与仪器学报, 2019, 33(2): 64-71.
WEI Y Z, XU X N.Ultra-short-term wind speed prediction model using LSTM networks[J]. Journal of electronic measurement and instrumentation, 2019, 33(2): 64-71.

基金

新疆维吾尔自治区科技支疆项目(2017E0276); 国家自然科学基金(51565055); 新疆维吾尔自治区研究生创新项目(XJ2019G030)

PDF(2644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/