不同输出方式下2种AA-CAES系统性能的对比研究

韩中合, 孙烨, 李鹏, 胡庆亚

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 60-66.

PDF(1591 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1591 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 60-66. DOI: 10.19912/j.0254-0096.tynxb.2020-0474

不同输出方式下2种AA-CAES系统性能的对比研究

  • 韩中合, 孙烨, 李鹏, 胡庆亚
作者信息 +

COMPARATIVE STUDY ON PERFORMANCE OF TWO AA-CAESSYSTEMS UNDER DIFFERENT OUTPUT MODES

  • Han Zhonghe, Sun Ye, Li Peng, Hu Qingya
Author information +
文章历史 +

摘要

为获得先进绝热压缩空气储能(AA-CAES)系统较高的效率与较好的经济性,设计2种输出策略。建立AA-CAES模型与和太阳能相结合的复合储能系统模型,通过数值模拟,比较2个系统在不同输出方式下的热力学特性与经济性能,并研究了基本参数的敏感性问题。结果表明:原系统在采用方案1时循环效率最高,复合系统在采用方案2时年利润率最大。储能功率的提高对2个系统的循环效率与年利润率有积极影响,而释能功率的提高对其有消极影响。当储释能时间间隔延长时,不同方案下2个系统的循环效率与年利润率均降低。

Abstract

In order to obtain higher efficiency and better economy of AA-CAES system, two output schemes are proposed. The model of the AA-CAES system and the composite energy storage system combined with solar energy are established. Through numerical simulation, the thermodynamic and economic characteristics of the two systems under different output modes are compared, and the sensitivity of the basic parameters are studied. Consequences can be indicated that the cycle efficiency of the original system is the highest when the scheme one is adopted, and the annual profit margin of the composite system is the biggest when the scheme two is adopted. The increase of energy storage power has a positive effect on the cycle efficiency and annual profit margin of the two systems, while the increase of energy release power has a negative effect on them.When the energy storage and release time interval extends, the cycle efficiency and annual profit margin of the two systems under different schemes all decrease.

关键词

压缩空气储能 / 太阳能 / 数值模拟 / 性能差异 / 输出方式

Key words

compressed air energy storage / solar energy / numerical simulation / performance difference / output mode

引用本文

导出引用
韩中合, 孙烨, 李鹏, 胡庆亚. 不同输出方式下2种AA-CAES系统性能的对比研究[J]. 太阳能学报. 2022, 43(5): 60-66 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0474
Han Zhonghe, Sun Ye, Li Peng, Hu Qingya. COMPARATIVE STUDY ON PERFORMANCE OF TWO AA-CAESSYSTEMS UNDER DIFFERENT OUTPUT MODES[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 60-66 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0474
中图分类号: TK02   

参考文献

[1] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
BAI J H, XIN S X, LIU J, et al.Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705.
[2] LUO X, WANG J H, DOONER M, et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied energy, 2015, 137: 511-536.
[3] 魏小龙, 张小波, 袁晓旭, 等. 压缩空气储能发电系统分析[J]. 东方汽轮机, 2019(4): 28-34.
WEI X L, ZHANG X B, YUAN X X, et al.Analysis of compressed air energy storage(CAES)power generation system[J]. Dongfang turbine, 2019(4): 28-34.
[4] LUO X, DOONER M, HE E.Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications[J]. Applied energy, 2018, 228: 1198-1219.
[5] LIU B, CHEN L J, MEI S W.The impact of key parameters on the cycle efficiency of multi-stage RCAES system[J]. Journal of modern power systems and clean energy, 2014, 2: 422-430.
[6] LI R X, WANG H R, ZHANG H R.Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage[J]. Renewable energy, 2019, 138: 326-339.
[7] ZHANG C, YAN B, WIEBERDINK J, et al.Thermal analysis of a compressor for application to compressed air energy storage[J]. Applied thermal engineering, 2014, 73: 1402-1411.
[8] KHOSRAVI A, CAMPOS H, MALEKAN M, et al.Performance improvement of a double pipe heat exchanger proposed in a small-scale CAES system: An innovative design[J]. Applied thermal engineering, 2019, 162: 114315.
[9] 韩中合, 庞永超. 储气室热力学特性对AA-CAES性能的影响[J]. 化工进展, 2017, 36(1): 47-52.
HAN Z H, PANG Y C.Influence of thermodynamic properties of air storage chamber on the performance of AA-CAES[J]. Chemical industry and engineering progress, 2017, 36(1): 47-52.
[10] JABARI F, NOJAVAN S, IVATLOO B M.Designing and optimizing a novel advanced adiabatic compressed air energy storage and air source heat pump based μ-combined Cooling, heating and power system[J]. Energy, 2016, 116(Part 1):64-77.
[11] 张远. 风电与先进绝热压缩空气储能技术的系统集成与仿真研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2014.
ZHANG Y.Study on system integration and simulation of wind power and advanced adiabatic compressed air energy storage technology[D]. Beijing: University of Chinese Academy of Sciences(Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2014.
[12] JUBEH N M, NAJJAR Y S H. Green solution for power generation by adoption of adiabatic CAES system[J]. Applied thermal engineering, 2012, 44: 85-89.
[13] LI R R, WANG H R, TU Q S.Thermo-economic analysis and optimization of adiabatic compressed air energy storage(A-CAES)system coupled with a Kalina cycle[J]. Energy technology, 2018, 6: 1011-1025.
[14] RAZMI A, SOLTANI M, AGHANAJAFI C, et al.Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage(CAES)[J]. Energy conversion and management, 2019, 187: 262-273.
[15] RASHIDI H, KHORSHIDI J.Exergoeconomic analysis and optimization of a solar based multigeneration system using multiobjective differential evolution algorithm[J]. Journal of cleaner production, 2018, 170: 978-990.
[16] ZHANG X F, ZENG R, DENG Q L, et al.Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage(CAES)[J]. Energy conversion and management, 2019, 199: 1119-1153.

基金

河北省自然科学基金(E2018502059)

PDF(1591 KB)

Accesses

Citation

Detail

段落导航
相关文章

/