基于模型预测控制的机侧变流器功率模块结温波动抑制策略

李辉, 杨甜, 胡玉, 谭宏涛, 周芷汀, 郑杰

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 455-461.

PDF(1699 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1699 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 455-461. DOI: 10.19912/j.0254-0096.tynxb.2020-0498

基于模型预测控制的机侧变流器功率模块结温波动抑制策略

  • 李辉1, 杨甜1, 胡玉1, 谭宏涛1, 周芷汀1, 郑杰1,2
作者信息 +

JUNCTION TEMPERATURE FLUCTUATION SUPPRESSION STRATEGY FOR POWER MODULE OF ROTOR-SIDE CONVERTER BASED ON MODEL PREDICTIVE CONTROL

  • Li Hui1, Yang Tian1, Hu Yu1, Tan Hongtao1, Zhou Zhiting1, Zheng Jie1,2
Author information +
文章历史 +

摘要

针对双馈风电机组运行在同步转速点附近时,低输出频率使机侧变流器功率模块承受较大结温波动,致使变流器可靠性降低的问题,提出一种结温波动抑制的模型预测控制(MPC)策略。首先,基于双馈感应电机电压和磁链方程,推导功率预测控制模型;其次,构建基于机组最大功率跟踪(MPPT)的目标函数;然后,搭建基于MPC的双馈风电机组电热仿真模型,时域分析机组在亚/超同步工况下往复运行时机侧变流器功率模块的动态/稳态结温波动;最后,对比现有结温波动抑制策略,验证所提控制策略的有效性。

Abstract

When the doubly-fed wind turbine operates near the synchronous speed point, the low output frequency makes the power module of the rotor-side converter suffer from large junction temperature fluctuation, resulting in reduced reliability of the converter, In order to solve the problem, a junction temperature fluctuation suppression strategy, based on model predictive control(MPC), is proposed. Firstly, the power predictive control model is derived based on the voltage and flux equations of doubly-fed induction generator. Secondly, the objective function is deduced to achieve the maximum power point tracking (MPPT). Then, an electro-thermal simulation model of doubly-fed wind turbine based on MPC strategy is built. The dynamic and steady-state junction temperature fluctuations of the power module, during the reciprocating operation under sub-/and super-synchronous conditions, are analyzed in time domain analysis. Finally, the effectiveness of the proposed control strategy is verified by comparing with the existing suppression strategy of junction temperature fluctuation.

关键词

风电机组 / 模型预测控制 / 最大功率跟踪 / 时域分析 / 机侧变流器功率模块 / 结温波动抑制

Key words

wind turbines / model predictive control / maximum power point tracking / time-domain analysis / power module of the rotor-side converter / junction temperature fluctuation suppression

引用本文

导出引用
李辉, 杨甜, 胡玉, 谭宏涛, 周芷汀, 郑杰. 基于模型预测控制的机侧变流器功率模块结温波动抑制策略[J]. 太阳能学报. 2022, 43(3): 455-461 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0498
Li Hui, Yang Tian, Hu Yu, Tan Hongtao, Zhou Zhiting, Zheng Jie. JUNCTION TEMPERATURE FLUCTUATION SUPPRESSION STRATEGY FOR POWER MODULE OF ROTOR-SIDE CONVERTER BASED ON MODEL PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 455-461 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0498
中图分类号: TM614   

参考文献

[1] CHEN Z, GUERRERO J M, BLAABJERG F.A review of the state of the art of power electronics for wind turbines[J]. IEEE transactions on power electronics, 2009, 24(8): 1859-1875.
[2] MA K, LISERRE M, BLAABJERG F.Reactive power influence on the thermal cycling of multi-MW wind power inverter[J]. IEEE transactions on industry applications, 2013, 49(2): 922-930.
[3] YANG S, XIANG D, BRYANT A, et al.Condition monitoring for device reliability in power electronic converters—A review[J]. IEEE transactions on power electronics, 2010, 25(11): 2734-2752.
[4] 何湘宁, 石巍, 李武华, 等. 基于大数据的大容量电力电子系统可靠性研究[J]. 中国电机工程学报, 2017, 37(1): 209-220.
HE X N, SHI W, LI W H, et al.Reliability enhancement of power electronics systems by big data science[J]. Proceedings of the CSEE, 2017, 37(1): 209-220.
[5] CHOI U M, BLAABJERG F, LEE K B.Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE transactions on power electronics, 2015, 30(5): 2517-2533.
[6] 杜雄, 李高显, 孙鹏菊, 等. 考虑基频结温波动的风电变流器可靠性评估[J]. 电工技术学报, 2015, 30(10): 258-265.
DU X, LI G X, SUN P J, et al.Reliability evaluation of wind power converters considering the fundamental frequency junction temperature fluctuations[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 258-265.
[7] 李辉, 季海婷, 秦星, 等. 考虑运行功率变化影响的风电变流器可靠性评估[J]. 电力自动化设备, 2015, 35(5): 1-8.
LI H, JI H T, QIN X, et al.Reliability evaluation considering operational active power variation of wind power converter[J]. Electric power automation equipment, 2015, 35(5): 1-8.
[8] XIANG D, WANG C, LIU Y.Switching frequency dynamic control for DFIG wind turbine performance improvement around synchronous speed[J]. IEEE transactions on power electronics, 2017, 32(9): 7271-7283.
[9] 李辉, 李洋, 廖兴林, 等. 基于转速控制的双馈风电机组机侧变流器IGBT器件结温波动抑制策略[J]. 电工技术学报, 2017, 32(12): 97-107.
LI H, LI Y, LIAO X L, et al.Insulated gate bipolar transistor junction temperature fluctuation depression strategy of doubly fed wind power converter based on rotor speed sontrol[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 97-107.
[10] TAN Y, MUTTAQI K M, MEEGAHAPOLA L, et al.Deadband control of doubly-fed induction generator around synchronous speed[J]. IEEE transactions on energy conversion, 2016, 31(4): 1610-1621.
[11] 刘向杰, 孔小兵. 电力工业复杂系统模型预测控制——现状与发展[J]. 中国电机工程学报, 2013, 33(5): 79-85.
LIU X J, KONG X B.Present situation and prospect of model predictive control application in complex power industrial process[J]. Proceedings of the CSEE, 2013, 33(5): 79-85.
[12] VAZQUEZ S, LEON J I, FRANQUELO L G, et al.Model predictive control:a review of its applications in power electronics[J]. IEEE industrial electronics magazine, 2014, 8(1): 16-31.
[13] JOSE R, MARIAN P K, JOSE R E, et al.State of the art of finite control set model predictive control in power electronics[J]. IEEE transactions on industrial informatics, 2013, 9(2): 1003-1016.
[14] 柳志飞, 杜贵平, 杜发达. 有限集模型预测控制在电力电子系统中的研究现状和发展趋势[J]. 电工技术学报, 2017, 32(22): 64-75.
LIU Z F, DU G P, DU F D.Research status and development trend of finite control set model predictive control in power electronics[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 64-75.
[15] 孙舶皓, 汤涌, 仲悟之, 等. 基于分布式模型预测控制的包含大规模风电集群互联系统超前频率控制策略[J]. 中国电机工程学报, 2017, 37(21): 6291-6302.
SUN B H, TANG Y, ZHONG W Z, et al.Multi-area interconnected power system advanced frequency control strategy considering large scale wind power cluster integration based on DMPC[J]. Proceedings of the CSEE, 2017, 37(21): 6291-6302.
[16] 徐峰达, 郭庆来, 孙宏斌, 等. 基于模型预测控制理论的风电场自动电压控制[J]. 电力系统自动化, 2015, 39(7): 59-67.
XU F D, GUO Q L, SUN H B, et al.Automatic voltage control of wind farms based on model predictive control theory[J]. Proceedings of the CSEE, 2015, 39(7): 59-67.
[17] FAN L, ZHU C, MIAO Z, et al.Modal analysis of a DFIG-Based wind farm interfaced with a series compensated network[J]. IEEE transactions on energy conversion, 2011, 26(4): 1010-1020.
[18] 李辉, 胡玉, 王坤, 等. 考虑杂散电感影响的风电变流器IGBT功率模块动态结温计算及热分布[J]. 电工技术学报, 2019, 34(20): 4242-4250.
LI H, HU Y, WANG K, et al.Thermal distribution and dynamic junction temperature calculation of IGBT power modules for wind turbine converters considering the influence of stray inductances[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4242-4250.

基金

国家自然科学基金(51675354); 重庆市教委科学技术研究项目(KJQN20190011); 国家高技术船舶科研项目(No.MC-202025-S02); 重庆市技术创新与应用发展专项(cstc2019jscx-msxmX0004)

PDF(1699 KB)

Accesses

Citation

Detail

段落导航
相关文章

/