为改善太阳能吸收制冷循环性能并解决太阳能吸收制冷机风冷化问题,提出一种太阳能驱动的风冷喷射式绝热吸收制冷循环,通过喷射式绝热吸收器实现吸收过程的传热传质分别强化,同时回收高压溶液节流损失和再循环溶液的余压,以进一步增强吸收效果。构建组成循环各部件热力学数学模型,探讨了环境温度、发生温度、蒸发温度以及喷射器对新循环的影响,并与2种传统吸收制冷循环进行了比较分析。结果表明,存在最佳发生温度使得新循环最大热性能系数(COPT);引入喷射式绝热吸收器显著改善了极端条件下新循环性能,设计工况下新循环的热性能系数(COPT)和电性能系数(COPE)较风冷绝热吸收制冷循环分别提高了7.69%和43.59%,较水冷非绝热吸收-喷射制冷循环分别提高了2.44%和273.86%。
Abstract
In order to improve the performance of solar absorption refrigeration cycle and solve the problems of solar powered air-cooled absorption chiller, solar-driven air-cooled adiabatic jet absorption refrigeration cycle (AAJA) is proposed in this paper. The jet-adiabatic absorber not only separates the processes of heat and mass transfer, but also recovers the lost work due to throttling process of high-pressure solution and excessive pressure of recirculation solution, which leads to the improvement of absorption efficiency. The mathematical model of thermodynamics of components is established, and the influences of ambient temperature, generating temperature, evaporating temperature and ejector pressure lift ratio on the three cycles are discussed and compared. The results show that, there is an optimal generating temperature for the proposed cycle to obtain the highest thermal coefficient of performance ($COP_T$), and the jet-adiabatic absorber can significantly improve cycle performance under the extreme operating conditions. As compared with the conventional air-cooled adiabatic absorption refrigeration (AAAR) cycle, the $COP_T$ and electric coefficient of performance ($COP_E$) of the proposed cycle are increased by 7.69% and 43.59% respectively, whereas the $COP_T$ and $COP_E$ of the novel cycle are 2.44% and 273.86%, respectively higher than those of the water-cooled non-adiabatic absorption ejector refrigeration (WNAE) cycle.
关键词
太阳能 /
吸收制冷 /
绝热吸收器 /
喷射器 /
风冷 /
性能系数
Key words
solar energy /
absorption refrigeration /
adiabatic absorber /
ejector /
air-cooled /
coefficient of performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩东, 阮建平, 梁林. 传热传质分离式太阳能吸收式制冷机实验研究[J]. 太阳能学报, 2009, 30(9): 1168-1172.
HAN D, YUAN J P, LIANG L.Experiment study on solar powered lithium bromide absorption chiller with and mass separated[J]. Acta energiae solaris sinica, 2009, 30(9): 1168-1172.
[2] RYAN W.Water absorption in an adiabatic spray of aqueous lithium bromide solution[D]. Chicago: Illinois Institute of Technology, 1995.
[3] WANG L, CHEN G M, WANG Q, et al.Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems[J]. Applied thermal engineering, 2007, 27(8): 1642-1652.
[4] 陈光明, 何一坚, 章文斌. 溴化锂溶液空气预冷却绝热吸收过程研究[J]. 太阳能学报, 2002, 23(3): 344-348.
CHEN G M, HE Y J, ZHANG W B.Study on lithium-bromide aqueous solution air-precooled adiabatic absorption process[J]. Acta energiae solaris sinica, 2002, 23(3): 344-348.
[5] 王延觉, 欧汝浩, 陈焕新, 等. 溴化锂绝热、增压双效吸收式制冷循环[J]. 流体机械, 2007, 35(5): 75-78.
WANG Y J, OU R H, CHEN H X, et al.Boosting double effect absorption refrigeration circle using heat and mass transfer separation absorber[J]. Fluid machinery, 2007, 35(5): 75-78.
[6] 申江, 高文全, 孙欢, 等. 传热传质分离的绝热吸收过程实验研究[J]. 低温与超导, 2009, 37(9): 55-59.
SHEN J, GAO W Q, SUN H, et al.Experimental investigation on heat and mass transfer separation adiabatic absorption process[J]. Cryogenics & superconductivity, 2009, 37(9): 55-59.
[7] HONG D L, CHEN G M, TANG L M, et al.A novel ejector-absorption combined refrigeration cycle[J]. International journal of refrigeration, 2011, 34(7): 1596-1603.
[8] 石玉琦, 洪大良, 陈光明, 等. 一个带喷射器的两级吸收式制冷循环[J]. 太阳能学报, 2015, 36(3): 599-603.
SHI Y Q, HONG D L, CHEN G M, et al.A two-stage absorption refrigeration cycle with an ejector[J]. Acta energiae solaris sinica, 2015, 36(3): 599-603.
[9] SIRWAN R, ALGHOUL M A, SOPIAN K, et al.Evaluation of adding flash tank to solar combined ejector-absorption refrigeration cycle[J]. Solar energy, 2013, 91: 283-296.
[10] VEREDA C, VENTAS R, LECUONA A, et al.Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump[J]. International journal of refrigeration, 2014, 38: 22-29.
[11] HUANG B J, CHANG J M, WANG C P, et al.A 1-D analysis of ejector performance[J]. International journal of refrigeration, 1999, 22(5): 354-364.
[12] WANG J F, DAI Y P, SUN Z X, et al.A theoretical study on a novel combined power and ejector refrigeration cycle[J]. International journal of refrigeration, 2009, 32(6): 1186-1194.
[13] KAITA Y.Thermodynamic properties of lithium bromide-water solutions at high temperatures[J]. International journal of refrigeration, 2001, 24(5): 374-390.
[14] MALHOTRA A, PANDA D M.Thermodynamic properties of superheated and supercritical steam[J]. Applied energy, 2001, 68(4): 387-396.