基于灰色关联分析的BSO-ELM-AdaBoost 风电功率短期预测

叶家豪, 魏霞, 黄德启, 谢丽蓉, 黄晨晨, 赵世成

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 426-432.

PDF(1809 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1809 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 426-432. DOI: 10.19912/j.0254-0096.tynxb.2020-0524

基于灰色关联分析的BSO-ELM-AdaBoost 风电功率短期预测

  • 叶家豪1, 魏霞1, 黄德启1, 谢丽蓉1, 黄晨晨1, 赵世成2
作者信息 +

SHORT-TERM FORECAST OF WIND POWER BASED ON BSO-ELM-ADABOOST WITH GREY CORRELATION ANALYSIS

  • Ye Jiahao1, Wei Xia1, Huang Deqi1, Xie Lirong1, Huang Chenchen1, Zhao Shicheng2
Author information +
文章历史 +

摘要

提出基于灰色关联分析与自适应提升的天牛群优化极限学习机风电功率短期预测方法。首先,利用灰色关联分析构建训练样本集,提高历史数据与预测日时间尺度上的信息关联度。在此基础上,利用天牛群算法优化极限学习机,为极限学习机寻找最优权阈值,提高其泛化能力。最后,引入集成学习理念,通过自适应提升算法学习组合多个极限学习机弱预测器,对预测误差进行修正,实现误差权重的自分配与重组。以此构成的极限学习机强预测器可进一步提高模型的预测精度,结合西北某风电场实际数据验证该方法的有效性。

Abstract

A novel method of short-term wind power prediction based on grey relational analysis and beetle swarm optimization extreme learning machine is proposed in this paper. Firstly, the gray correlation analysis is used to construct a training sample set to improve the correlation between historical data and forecasting information on the daily time scale. Furthermore, the beetle swarm optimization algorithm is used to optimize the extreme learning machine and find the optimal weight threshold for the extreme learning machine to improve its generalization ability. Finally, the concept of integrated learning is introduced, and multiple weak predictors of extreme learning machines are combined through adaptive enhancement algorithm learning to correct the prediction errors to realize the self-allocation and reorganization of error weights. The strong predictor of the extreme learning machine formed further improves the prediction accuracy of the model and the effectiveness of the method is verified by the actual data of a wind farm in Northwest China.

关键词

风电 / 功率预测 / 自适应提升 / 灰色关联分析 / 天牛群算法 / 极限学习机

Key words

wind power / power forecast / Adaptive Boosting / grey correlation analysis / beetle swarm algorithm / extreme learning machine

引用本文

导出引用
叶家豪, 魏霞, 黄德启, 谢丽蓉, 黄晨晨, 赵世成. 基于灰色关联分析的BSO-ELM-AdaBoost 风电功率短期预测[J]. 太阳能学报. 2022, 43(3): 426-432 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0524
Ye Jiahao, Wei Xia, Huang Deqi, Xie Lirong, Huang Chenchen, Zhao Shicheng. SHORT-TERM FORECAST OF WIND POWER BASED ON BSO-ELM-ADABOOST WITH GREY CORRELATION ANALYSIS[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 426-432 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0524
中图分类号: TM614   

参考文献

[1] 刘武周, 刘友波. 基于改进粒子群优化算法风力发电功率预测研究[J]. 可再生能源, 2017, 35(9): 1331-1335.
LIU W Z, LIU Y B.Research on wind power generation prediction based on improved particle, swarm, optimization, algorithm[J]. Renewable energy, 2017, 35(9): 1331-1335.
[2] LAHOUAR A, BEN H S J. Hour-ahead wind power forecast based on random forests[J]. Renewable energy, 2017, 109: 529-541.
[3] 杨秀媛. 改进K近邻算法在风功率预测及风水协同运行中的应用[J]. 电网技术, 2018, 42(3): 772-778.
YANG X Y.Wind power prediction based on improved K-nearest neighbor algorithm and its application in co-operation of wind and hydro powers[J]. Power grid technology, 2018, 42(3): 772-778.
[4] WAN C, XU Z.Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE transactions on power systems, 2014, 29(3): 1033-1044.
[5] 刘颖明. 结合风功率预测及储能能量状态的模糊控制策略平滑风电出力[J]. 电网技术, 2019, 18(3): 1-11.
LIU Y M.A fuzzy control strategy combined with wind power prediction and energy storage soe for smoothing wind power output[J]. Power system technology, 2019, 18(3): 1-11.
[6] 刘红岩, 陈剑, 陈国青. 数据挖掘中的数据分类算法综述[J]. 清华大学学报(自然科学版), 2002, 42(6): 727-730.
LIU H Y, CHEN J, CHEN G Q.Review of classification algorithms for data mining[J]. Journal of Tsinghua University(science and technology), 2012, 42(6): 727-730.
[7] LIU G, YU W D.The BP neural network modeling on worsted spinning with grey superior theory and correlation analysis[C]//2008 Fourth International Conference on Natural Computation, Ji’nan, China, 2008, 3: 374-378.
[8] 武小梅, 林翔, 谢旭泉, 等. 基于VMD-PE和优化相关向量机的短期风电功率预测[J]. 太阳能学报, 2018, 39(11): 3277-3285.
WU X M, LIN X, XIE X Q, et al.Short-term wind power prediction based on VMD-PE and optimized correlation vector machine[J]. Acta energiae solaris sinica, 2018, 39(11): 3277-3285.
[9] 张晓英, 张晓敏, 廖顺, 等. 基于聚类与非参数核密度估计的风电功率预测误差分析[J]. 太阳能学报, 2019, 40(12): 3594-3604.
ZHANG X Y, ZHANG X M, LIAO S, et al.Error analysis of wind power prediction based on clustering and non-parametric kernel density estimation[J]. Acta energiae solaris sinica, 2019, 40(12): 3594-3604.
[10] 王爽心, 赵欣, 李涛, 等. 基于小世界优化的风电功率变权组合预测模型[J]. 太阳能学报, 2015, 36(12): 2867-2873.
WANG S X, ZHAO X, LI T, et al.Wind power variable weight combination forecasting model based on small world optimization[J]. Acta energiae solaris sinica, 2015, 36(12): 2867-2873.
[11] 彭晨宇, 陈宁, 高丙团. 结合多重聚类和分层聚类的超短期风电功率预测方法[J]. 电力系统自动化, 2020, 44(2): 173-181.
PENG C Y, CHEN N, GAO B T.Ultra-short-term wind power prediction method combining multiple clustering and hierarchical clustering[J]. Power system automation, 2020, 44(2): 173-181.
[12] 崔嘉. 基于改进CFD与小波混合神经网络组合的风电场功率预测方法[J]. 电网技术, 2017, 41(1): 79-85.
CUI J.New method of combined wind power forecasting based on improved CFD and wavelet-HNN model[J]. Power system technology, 2017, 41(1): 79-85.
[13] 刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8): 2041-2046.
LIU S F, CAI H, YANG Y J, et al.Research progress of gray relational analysis model[J]. System engineering theory and practice, 2013, 33(8): 2041-2046.
[14] WU Q, MA Z P, XU G, et al.A novel neural network classifier using beetle antennae search algorithm for pattern classification[J]. IEEE access, 2019, 7: 64686-64696.
[15] ZHU Z Y, ZHANG Z Y, MAN W S, et al.A new beetle antennae search algorithm for multi-objective energy management in microgrid[C]//2018 13th IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 2018.
[16] ZHANG Z, YANG X.Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance[J]. Advances in manufacturing, 2019(3): 315-325.
[17] 邹东尧, 陈鹏伟, 刘宽. 一种改进的RSSI测距定位算法[J]. 电讯技术, 2019, 59(10): 1191-1196.
ZOU D Y, CHEN P W, LIU K.An improved RSSI ranging and positioning algorithm[J]. Telecommunications technology, 2019, 59(10): 1191-1196.
[18] WANG T T, YANG L, LIU Q. Beetle swarm optimization algorithm: theory and application[J]. arXiv preprint arXiv:1808. 00206, 2018.
[19] 秦琼, 刘树洁, 赖旭, 等. GA优化ELM神经网络的风电场测风数据插补[J]. 太阳能学报, 2018, 39(8): 2125-2132.
QIN Q, LIU S J, LAI X, et al.Interpolation of wind measurement data for wind farms based on GA optimized ELM neural network[J]. Acta energiae solaris sinica, 2018, 39(8): 2125-2132.
[20] 张荣, 邓赵红, 王士同, 等. 针对小样本数据集的鲁棒单隐层前馈网络建模方法[J]. 控制与决策, 2012, 27(9): 1308-1319.
ZHANG R, DENG Z H, WANG S T, et al.Robust single hidden layer feedforward network modeling method for small sample data sets[J]. Control and decision, 2012, 27(9): 1308-1319.
[21] 周湶, 王时征, 廖瑞金, 等. 基于AdaBoost优化云理论的变压器故障诊断方法[J]. 高电压技术, 2015, 41(11): 3804-3811.
ZHOU J, WANG S Z, LIAO R J, et al.Transformer fault diagnosis method based on AdaBoost optimization cloud theory[J]. High voltage engineering, 2015, 41(11): 3804-3811.
[22] FREUND Y, SCHAPIRE R E.A decision-theoretic general ization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139.

基金

国家自然科学基金(51468062)

PDF(1809 KB)

Accesses

Citation

Detail

段落导航
相关文章

/