采用CFD计算软件对垂直轴风力机气动性能进行计算。首先,使用ICEM软件对模型进行前处理,通过Fluent软件进行数值模拟,分析不同计算时间步长和湍流模型对风力机气动特性仿真结果的影响,确定符合该研究模型的计算方法。随后,对顺流垂旋型垂直轴风力机在不同叶尖速比下进行计算,发现该风力机在叶尖速比为0.42时获得最大功率系数。然后,计算分析不同来流风速对该风力机性能的影响,结果表明,顺流垂旋型垂直轴风力机的平均转矩随来流风速的增大而增大,平均转矩系数和功率系数与来流风速无关。最后,针对转子在不同公转角下开展研究,并将其性能与增强型垂直轴风力机进行对比,得出,当近公转角为40°、远公转角为50°时,风力机的平均转矩系数大,由此推导出该风力机叶片的变桨规律,并分析在此变桨规律下风力机的自启动性能。
Abstract
The aerodynamic performance of vertical axis wind turbine is calculated by CFD software. Firstly, ICEM software is used to preprocess the model, and fluent software is used for numerical simulation to analyze the influence of different calculation time step and turbulence model on the aerodynamic characteristics simulation results of wind turbine, and the calculation method conforming to the research model is determined. Then, it is found that the maximum power factor is obtained when the tip speed ratio is 0.42. In addition, the influence of different incoming wind speeds on the performance of the wind turbine is calculated and analyzed. The results show that the average torque of the windward rotation vertical axis wind turbine increases with the increase of the incoming wind speed, and the average torque coefficient and power coefficient have nothing to do with the incoming wind speed. Finally, the performance of the rotor is compared with that of the enhanced vertical axis wind turbine under different common angles. It is concluded that when the near- revolution Angle is 40° and the far-revolution Angle is 50° the wind turbine has the highest average torque coefficient. From this, the pitch law of the wind turbine blade is deduced, and the self-starting performance of the wind turbine under this pitch law is analyzed.
关键词
计算流体力学 /
数值模拟 /
风力机 /
垂直轴 /
气动特性 /
叶尖速比
Key words
CFD /
numerical modeling /
wind turbines /
vertical axis /
aerodynamics /
tip speed ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUNNYK A, KUMAR N M.Vertical axis wind turbine: aerodynamic modelling and its testing in wind tunnel[J]. Procedia computer science, 2016, 93: 1017-1023.
[2] HAK M L, OH J K.Performance improvement of horizontal axis wind turbines by aerodynamic shape optimization including aeroealstic deformation[J]. Renewable energy, 2020, 147(Pt 1): 2128-2140.
[3] KUMAR Y, RINGENBERG J, DEPURU S S, et al.Wind energy: trends and enabling technologies[J]. Renewable & sustainable energy reviews, 2016, 53(1): 209-224.
[4] LI Y, ZHAO S Y, TAGAWA K, et al.Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine[J]. Energy conversion & management, 2018, 167(7): 70-80.
[5] LIU W D, XIAO Q.Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade[J]. Ocean engineering, 2015, 110: 339-356.
[6] LOGANATHAN B, MUSTARY I, CHOWDHURY H, et al.Effect of sizing of a Savonius type vertical axis micro wind turbine[J]. Energy procedia, 2017, 110: 555-560.
[7] 冯放, 李岩, 赵守阳, 等. 具有升阻复合启动结构垂直轴风力机气动特性数值模拟[J] . 太阳能学报, 2018, 39(4): 1052-1059.
FENG F, LI Y, ZHAO S Y, et al.Numerical simulation of aerodynamic characteristics of vertical axis wind turbine with lift-drag composite starting structure[J]. Acta energiae solaris sinica, 2018, 39(4): 1052-1059.
[8] ERIKSSON S, BERNHOFF H, LEIJION M.Evaluation of different turbine concepts for wind power[J]. Renewable & sustainable energy reviews, 2008, 12(5): 1419-1434.
[9] 张立勋, 张松, 焦启飞, 等. 智能变桨垂直轴风力发电机的变桨规律设计[J]. 太阳能学报, 2013, 34(8): 1427-1433.
ZHANG L X, ZHANG S, JIAO Q F, et al.Pitching laws of smart variable- pitch vertical axis wind turbine[J]. Acta energiae solaris sinica, 2013, 34(8): 1427-1433.
[10] KAVADE R K, GHANEGAONKAR P M.Optimisation and performance analysis of vertical axis wind turbine with blade pitching at best position angle for different tip speed ratios[J]. International journal of ambient energy, 2020, 41(7): 783-792.
[11] ALTAN B D, ATILGAN M, OZDAMAR A.An experimental study on improvement of a Savonius rotor performance with curtaining[J]. Experimental thermal and fluid science, 2008, 32(8): 1673-1678.
[12] PENG Y X, XU Y L, ZHAN S.Hybrid DMST model for high-solidity straight-bladed VAWTs[J]. Energy procedia, 2019, 158: 376-381.
[13] PENG Y X, XU Y L, ZHAN S, et al.High-solidity straight-bladed vertical axis wind turbine: aerodynamic force measurements[J]. Journal of wind engineering & industrial aerodynamics, 2019, 184: 34-48.
[14] PENG Y X, XU Y L, ZHAN S.A hybrid DMST model for pitch optimization and performance assessment of high- solidity straight-bladed vertical axis wind turbines[J]. Applied energy, 2019, 250: 215-228.
[15] 徐夏, 周正贵, 邱名. 垂直轴风力机叶轮气动性能计算[J]. 太阳能学报, 2012, 33(2): 197-203.
XU X, ZHOU Z G, QIU M.Calculation of aerodynamic performance of the vertical-axis wind turbine[J]. Acta energiae solaris sinica, 2012, 33(2): 197-203.
[16] 刘陈, 运洪禄, 吕续舰. 基于CFD的二维垂直轴风力机性能计算[J]. 太阳能学报, 2020, 41(2): 144-151.
LIU C, YUN H L, LYU X J.CFD based study on two-dimension vertical axis wind turbines[J]. Acta energiae solaris sinica, 2020, 41(2): 144-151.
[17] 徐文浩, 邱展, 喻伯平, 等. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.
XU W H, QIU Z, YU B P, et al.Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of Zhejiang University(engineering science), 2019, 53(11): 2223-2230.
[18] 赵振宙, 陈潘浩, 陈景茹, 等. 基于双盘面多流管模型的升力型风轮气动性能改善分析[J]. 太阳能学报, 2017, 38(9): 2527-2534.
ZHAO Z Z, CHEN P H, CHEN J R, et al.Research on aerodynamic characteristic of lift type wind turbine based on double-disk multy stream model[J]. Acta energiae solaris sinica, 2017, 38(9): 2527-2534.
[19] 张立勋, 张松, 郭健, 等. Darrieus垂直轴风力机的双盘面随动流管模型[J]. 哈尔滨工程大学学报, 2013, 34(3): 364-369, 408.
ZHANG L X, ZHANG S, GUO J, et al.Double-disk moving-stream tube model for Darrieus wind turbine[J]. Journal of Harbin Engineering University, 2013, 34(3): 364-369, 408.