针对移动机器人在光伏组件清洁过程中对光伏电站的非平坦地形分类问题,提出采用W-MC-MS准则优化视觉词袋模型的分类方法对地形图像进行分类。首先,对采集到的光伏电站实际地形图像进行SIFT特征提取,然后将这些特征利用K均值聚类算法进行聚类计算,生成地形图像的初始码本词典;引入W-MC-MS准则对其进行优化,以降低码本词典规模,提高视觉地形分类性能。实验以地形图像的平均分类精度和分类时间代价作为评价标准,对比码本词典优化前后的分类性能,验证了优化方法在地形分类中的有效性。
Abstract
Considering the classification of uneven terrain for photovoltaic power stations during photovoltaic panel cleaning by mobile robots, a classification method based on W-MC-MS was then proposed to optimize the Bag-of-visual-word Model to classify the terrain images. First of all, the SIFT features are extracted from the actual terrain images of the photovoltaic power stations; then, the K-means clustering algorithm is adopted to calculate these features and generate the initial code dictionary of terrain images; afterwards the W-MC-MS criterion is adopted for optimization so as to reduce the size of codebook dictionary and improve the performance of visual terrain classification. The experiment considered the average classification accuracy and the cost of classification time regarding the terrain images as the evaluation standards, compared the classification performance of the codebook dictionary before and after optimization, and finally verified the validity of the optimization method in terrain classification.
关键词
移动机器人 /
光伏组件 /
K均值聚类 /
地形分类 /
视觉词袋模型
Key words
mobile robots /
PV modules /
K-means clustering /
classification of terrain /
bag-of-visual-word model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 肖运启, 张美玲, 郭治昌, 等. 山地光伏电站固定式组件安装角度优化方法[J]. 太阳能学报, 2020, 41(5): 329-335.
XIAO Y Q, ZHANG M L, GUO Z C, et al.Optimun design for tilt and orientation angle of fixed pv module of pv power station on mountainous area[J]. Acta energiae solaris sinica, 2020, 41(5): 329-335.
[2] PAPADAKIS P.Terrain traversability analysis methods for un-manned ground vehicles: A survey[J]. Engineering applications of artificial intelligence, 2013, 26(4): 1373-1385.
[3] LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkya, Greece, 1999: 1150-1157.
[4] LOWE D G.Distinctive image feature from scale-invariant keypoints[J]. International journal of computer vision. 2004, 60: 91-100.
[5] ZENKER S, AKSOY E E, GOLDSCHMIDT D, et al.Visual terrain classification for selecting energy efficient gaits of a hexapod robot[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM), IEEE, Wollongong, NSW, Austruling, 2013.
[6] FILITCHKIN P, BYL K.Feature-based terrain classification for LittleDog[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), IEEE, 2012.
[7] 赵理君, 唐娉, 霍连志, 等. 图像场景分类中视觉词包模型方法综述[J]. 中国图象图形学报, 2014, 19(3): 333-343.
ZGAO L J, TANG P, HUO L Z, et al.Review of the bag-of-visual-words models in image scene classification[J]. Chinese journal of image graphics, 2014, 19(3): 333-343.
[8] ALQASRAWI Y, NEAGU D, COWLING P I.Fusing integrated visual vocabularies-based bag of visual words and weighted colour moments on spatial pyramid layout for natural scene image classification[J]. Signal image & video processing, 2013, 7(4): 759-775.
[9] LU Y N, XIE F Y, LIU T L, et al.No reference quality assessment for multiply-distorted images based on an improved bag-of-words model[J]. IEEE signal processing letters, 2015, 22(10): 1811-1815.
[10] QU Y Y, WU S J, LIU H, et al.Evaluation of local features and classifiers in BOW model for image classification[J]. Multimedia tools and applications, 2014, 70(2): 605-624.
[11] 赵燕伟, 朱芬, 桂方志, 等. 基于可拓距的改进k-means聚类算法[J]. 智能系统学报, 2020, 15(2): 344-351.
ZHAO Y W, ZHU F, GUI F Z, et al.Improved k-means algorithm optimizing the initial clustering centers based on extension distance[J]. Journal of intelligent systems, 2020, 15(2): 344-351.
[12] GUPTA S, KUMAR M, ANUPAM G.Improved object recognition results using SIFT and ORB feature detector[J]. Springer US, 2019, 78: 34157-34171.
[13] JIANG J L, WU D M, JIANG Z.A correlation-based bag of visual words for image classification[C]//2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference(ITOEC), Chongqing, China, 2017: 917-920.
[14] KELBERT M, SUHOV Y.Information Theory and Coding by Example[M]. Oxford: Cambridge University Press, 2013: 18-86.
[15] 薛琮琳, 郭剑辉, 马玲玲. 基于空间特征的多平面支持向量机地形分类[J]. 计算机与数字工程. 2019, 47(5): 1217-1222.
XUE C L, GUO J H, MA L L.Terrain classification of multi-plane support vector machine based on spatial feature[J]. Computer and digital engineering, 2019, 47(5): 1217-1222.
基金
甘肃省自然科学基金(18JR3RA139); 甘肃省省级引导科技创新发展项目(2018ZX—13)