基于广义预测控制的风电场调频控制策略研究

刘颖明, 王树旗, 王晓东

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 405-410.

PDF(1872 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1872 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 405-410. DOI: 10.19912/j.0254-0096.tynxb.2020-0555

基于广义预测控制的风电场调频控制策略研究

  • 刘颖明, 王树旗, 王晓东
作者信息 +

SECONDARY FREQUENCY REGULATION CONTROL OF WIND FARM BASED ON GENREALIZED PREDICTIVE CONTROL

  • Liu Yingming, Wang Shuqi, Wang Xiaodong
Author information +
文章历史 +

摘要

为降低通信延迟对风电参与二次调频时频率稳定性的影响,提出一种基于系统辨识理论和广义预测控制算法控制风电机组参与电力系统二次调频的控制策略。首先,建立考虑通信延迟的单区域互联电力系统二次调频模型。其次,通过利用变遗忘因子递推最小二乘算法(FFRLS)进行在线辨识,建立单输入单输出被控系统的差分方程的受控自回归滑动平均模型(CARMA),将系统频率偏差和风电场功率指令作为输出变量和控制变量设计广义预测控制器。最后,在不同延时参数以及参数摄动情况下对所提控制策略进行仿真验证。结果表明:所提控制策略在满足系统频率稳定性的同时,使得系统上升时间缩短,超调量大幅减小。

Abstract

In order to reduce the impact of communication delay on frequency stability when wind power participates in secondary frequency regulation,this paper proposes a control strategy based on system identification theory and generalized predictive control algorithm to control wind turbines participating in the secondary frequency regulation of the power system. First,the second frequency regulation model of single-area interconnected power system considering communication delay is established. Second,through the use of forgetting factor recursive least squares (FFRLS) algorithm for online identification,a controlled auto regressive moving average (CARMA) model of the difference equation of the controlled system with single input and single output is established. The system frequency deviation and wind farm power commands are used as output variables and control variables to design a generalized predictive controller. Finally,the predictive control strategy is simulated and verified under different delay parameters and parameter perturbations. The result shows that the control strategy not only satisfies the frequency stability of the system,but also shortens the rise time of the system and greatly reduces the amount of overshoot.

关键词

风电功率 / 预测控制 / 系统辨识 / 风电机组 / 二次调频

Key words

wind power / predictive control / system identification / wind turbines / secondary frequency regulation

引用本文

导出引用
刘颖明, 王树旗, 王晓东. 基于广义预测控制的风电场调频控制策略研究[J]. 太阳能学报. 2022, 43(3): 405-410 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0555
Liu Yingming, Wang Shuqi, Wang Xiaodong. SECONDARY FREQUENCY REGULATION CONTROL OF WIND FARM BASED ON GENREALIZED PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 405-410 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0555
中图分类号: TK89   

参考文献

[1] 黄瀚燕, 周明, 李庚银. 考虑多重不确定性和备用互济的含风电互联电力系统分散协调调度方法[J]. 电网技术, 2019, 43(2): 381-389.
HUANG H Y, ZHOU M, LI G Y.Decentralized coordinated dispatching method for interconnected power systems with wind power considering multiple uncertainties and backup mutual aid[J]. Power system technology, 2019, 43(2): 381-389.
[2] 林峰, 汪震, 王冠中, 等. 考虑风电降载的力系统鲁棒备用调度模型[J]. 电力系统自动化, 2018, 42(19): 64-70.
LIN F,WANG Z,WANG G Z, et al.Robust standby dispatch model for power systems considering wind power downloading[J]. Automation of electric power systems, 2018, 42(19): 64-70.
[3] DREIDY M, MOKHLIS H, MEKHILEF S.Inertia response and frequency control techniques for renewable energy sources[J]. Renewable & sustainable energy reviews, 2017, 69: 144-155.
[4] LEE J, MULJADI E, SORENSEN P, et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE transactions on sustainable energy, 2016, 7(1): 279-288.
[5] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26.
TIAN X S, WANG W S, CHI Y N, et al.Variable parameter virtual inertia control based on effective energy storage of doubly-fed wind turbine[J]. Automation of electric power systems, 2015, 39(5): 20-26.
[6] 陈宇航, 王刚, 侍乔明, 等. 一种新型风电场虚拟惯量协同控制策略[J]. 电力系统自动化, 2015, 39(5): 27-33.
CHEN Y H, WANG G, SHI Q M, et al.A new virtual inertia cooperative control strategy for wind farms[J]. Automation of electric power systems, 2015, 39(5): 27-33.
[7] WILCHES B F, CHOW J H, SANCHEZ G J J. A fundamental study of applying wind turbine for power system frequency control[J]. IEEE transactions on power systems, 2016, 31(5): 1496-1505.
[8] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803.
ZHANG X, CHEN Y L, YUE S, et al.Retrospect and prospect of wind power participation in power system frequency modulation technology research[J]. Power system technology, 2018, 42(6): 1793-1803.
[9] GHOSH S, KAMALASADAN S, SENROY N, et al.Doublyfed induction generator (DFIG) based farm control framework for primary frequency and inertial response application[J]. IEEE transactions on power systems, 2016, 31(3): 1861-1871.
[10] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314.
TANG X S, MIAO F F, QI Z P, et al.Research on frequency modulation technology of wind power generation summary[J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314.
[11] 刘柳, 王德林, 杨仁杰, 等. 基于桨距角控制的双馈风机参与电网二次调频控制策略研究[J]. 电工电能新技术, 2020, 39(5): 10-16.
LIU L, WANG D L, YANG R J, et al.Research on control strategy of double-fed wind turbines participating in secondary frequency regulation of power grid based on pitch angle control[J]. Advanced technology of electrical engineering and energy, 2020, 39(5): 10-16.
[12] LIU Y, WANG Y, WANG X, et al.Active power dispatch for supporting grid frequency regulation in wind farms considering fatigue load[J]. Energies, 2019, 12(8): 1508.
[13] ZHANG Z S, SUN Y Z, LIN J, et al.Coordinated frequency regulation bydoubly fed induction generator-based wind power plants[J]. IET Renewable power generation, 2012, 6(1): 38-47.
[14] WANG X D, WANG Y W, LIU Y M, et al.Dynamic load frequency control for high-penetration wind power considering wind turbine fatigue load[J]. International journal of electrical power and energy systems, 2020, 117(3): 105696.
[15] 庞中华, 崔红. 系统辨识与自适应控制MATLAB仿真[M]. 北京: 北京航空航天大学出版社, 2009.
PANG Z H, CUI H.System identification and adaptive control MATLAB simulation[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2009.

基金

国家自然科学基金(51677121); 辽宁省“兴辽英才计划”(XLYC1802041)

PDF(1872 KB)

Accesses

Citation

Detail

段落导航
相关文章

/