钢-混凝土组合式风力发电塔架地震响应分析

陈俊岭, 王大伟, 冯又全

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 396-404.

PDF(1894 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1894 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 396-404. DOI: 10.19912/j.0254-0096.tynxb.2020-0556

钢-混凝土组合式风力发电塔架地震响应分析

  • 陈俊岭1, 王大伟1, 冯又全2
作者信息 +

SEISMIC RESPONSE ANALYSIS OF STEEL-CONCRETE HYBRID WIND TURBINE TOWER

  • Chen Junling1, Wang Dawei1, Feng Youquan2
Author information +
文章历史 +

摘要

钢-混凝土组合式风力发电塔架上部为钢塔筒,下部为混凝土塔筒,高度方向具有较大的质量和刚度突变,其在地震作用下的响应和传统单管式钢塔架显著不同。利用ABAQUS对同一风电场的2.0 MW单管式钢塔架和组合式塔架建立精细化模型,选取3种场地条件,采用振型分解反应谱法计算2种塔架的地震响应并进行对比。针对3种场地条件,选取相应的地震波对组合式塔架进行非线性时程分析。分析结果表明,振型分解反应谱法直接用于计算组合式塔架的地震作用偏不安全,工程设计时需要补充时程分析;组合式塔架的内力响应和塔顶水平位移响应分别在中硬土场地和软弱土场地达到最大;前3阶振型对塔架的动力响应均有影响,2阶振型响应最大,高阶振型影响显著。

Abstract

The steel-concrete hybrid wind turbine tower is characterized by the lower part of the traditional steel tube tower replaced with the concrete segment. Because of the mass and stiffness mutation along the height of the tower, its seismic response is significantly different from that of the traditional single-tube steel wind turbine tower. Two detailed finite element models for a single-tube steel tower and a steel-concrete hybrid tower for 2.0 MW wind turbines built in the same wind farm, are developed with ABAQUS. The mode-superposition response spectrum method is applied to calculate and compare the seismic responses of these two towers under three different site conditions. Three groups of ground motions corresponding to three site conditions are used to analyze the dynamic response of the steel-concrete hybrid tower by nonlinear time series analyses. The numerical results show that the mode-superposition response spectrum method is not safe to calculate the seismic response of the steel-concrete hybrid tower directly and the time series analysis should be a necessary supplement in engineering design. The internal force and horizontal displacement responses at the top of the hybrid tower reach their maximums under the medium hard soil site and the soft soil site respectively. The first three modes have obvious contributions on the dynamic response of the steel-concrete hybrid tower. The dynamic response corresponding to the second mode response is the largest contribution, which shows the contributions of higher modes are significant.

关键词

风电机组 / 地震响应 / 时程分析 / 谱分析 / 钢-混凝土组合式塔架

Key words

wind turbines / seismic response / time series analysis / spectrum analysis / steel-concrete hybrid tower

引用本文

导出引用
陈俊岭, 王大伟, 冯又全. 钢-混凝土组合式风力发电塔架地震响应分析[J]. 太阳能学报. 2022, 43(3): 396-404 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0556
Chen Junling, Wang Dawei, Feng Youquan. SEISMIC RESPONSE ANALYSIS OF STEEL-CONCRETE HYBRID WIND TURBINE TOWER[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 396-404 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0556
中图分类号: TK81    TU398   

参考文献

[1] ISHIHARA T, SAEWAR M W.Numerical and theoretical study on seismic response of wind turbines[C]//Proceedings of European Wind Energy Conference, BrusselsBelgium, 2008.
[2] PROWELL I, VELETZOS M, EIGAMAL A, et al.Experimental and numerical seismic response of a 65 kW wind turbine[J]. Journal of earthquake engineering, 2009, 13(8): 1172-1190.
[3] NUTA E, CHRISTOPOULOS C, PACKER J A.Methodology for seismic risk assessment for tubular steel wind turbine towers: application to Canadian seismic environment[J]. Canadian journal of civil engineering, 2011, 38(3): 293-304.
[4] 毕继红, 任洪鹏, 尹元彪. 预应力钢筋混凝土风力发电塔架得地震响应分析[J]. 天津大学学报, 2011, 44(2): 126-133.
BI J H, REN H P, YIN Y B.Seismic analysis of pre-stressed reinforced concrete wind-turbine tower[J]. Journal of Tianjin University, 2011, 44(2): 126-133.
[5] 戴靠山, 毛振西, 赵志, 等. 不同频谱特性地震动下某风电塔响应振动台试验研究[J]. 工程科学与技术, 2018, 50(3): 126-133.
DAI K S, MAO Z X, ZHAO Z, et al.Shaking table test study on seismic responses of a wind turbine under ground motions with different spectral characteristics[J]. Advanced engineering sciences, 2018, 50(3): 126-133.
[6] 赵志, 戴靠山, 毛振西, 等. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
ZHAO Z, DAI K S, MAO Z X, et al.Failure analyses of a wind turbine tower under ground motions with different frequency characteristics[J]. Engineering mechanics, 2018, 35(S1): 293-299.
[7] GB 50011—2010(2016版), 建筑抗震设计规范[S].
GB 50011—2010, Code for seismic design of buildings[S].
[8] LUBLINER J, OLIVER J, OLLER S, et al.A plastic-damage model for concrete[J]. International journal of solids and structures, 1989, 25(3): 299-326.
[9] LEE J, FENVES G L.Plastic-damage model for cyclic loading of concrete structures[J]. Journal of engineering mechanics, 1988, 124(8): 892-900.
[10] IEC 61400-1 Wind turbines-part 1:design requirements[S]. Geneva, Switzerland: International Electrotechnical Commission(IEC), 2005.
[11] Guidelines for the certification of wind turbines[S]. Hamburg, Germany: Germanischer Lloyd(GL), 2010.
[12] JGJ 3—2010, 高层建筑混凝土结构技术规程[S].
JGJ 3—2010, Technical specification for concrete structures of tall building[S].
[13] GB 50135—2019, 高耸结构设计标准[S].
GB 50135—2019, Standard for design of high-rising structures[S].
[14] 俞瑞芳, 周锡元. 非比例阻尼弹性结构地震反应强迫解耦方法的理论背景和数值检验[J]. 工业建筑, 2005, 35(2): 52-56.
YU R F, ZHOU X Y.Theoretical and numerical research on forced uncoupling method for seismic response of non-classically damped linear system[J]. Industrial construction, 2005, 35(2): 52-56.
[15] WITCHER D.Seismic analysis of wind turbines in the time domain[J]. Wind energy, 2005, 8(1): 81-91.

基金

国家自然科学基金面上项目(51978528)

PDF(1894 KB)

Accesses

Citation

Detail

段落导航
相关文章

/