为了实现风力机主轴轻量化设计,首先根据有限元结果,以质量为目标函数,应力、变形为约束条件建立数学模型。然后利用实验设计方法(DOE)获得初始样本点,并应用Kriging模型建立响应面,得到各设计变量对应力、变形和质量的影响程度和变化趋势,同时获得局部最优解。最后利用多目标遗传算法(MOGA)进行优化,通过1100次迭代,获得全局最优解。实现主轴减重10.71%,可为风力机其他零部件轻量化设计提供参考性优化设计方法。
Abstract
In order to realize the lightweight design for main shaft of wind turbine, Firstly, according to the finite element results, a mathematical model was established with mass as objective function, stress and deformation as constraint conditions. Then the method of Design of Experiment (DOE) was used to obtain the initial sample points, and the Kriging model was used to establish the response surface, obtain influence degree and variation trend of each design variable on stress, deformation and quality, at the same time, get the local optimal solution. Finally, the Multi Objective Genetic Algorithm (MOGA) was used for optimization, and the global optimal solution was obtained thought 1100 iterations. The weight of the main shaft was reduced by 10.71%, which provided a reference optimization design method for the lightweight design of other parts of the wind turbine.
关键词
风力机 /
主轴 /
DOE /
Kriging模型 /
MOGA算法
Key words
wind turbines /
main shaft /
DOE /
Kriging model /
MOGA algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜静, 周宏丽, 何章涛, 等. 风力发电机主轴结构强度分析[J]. 现代科学仪器, 2011(5): 68-72.
DU J, ZHOU H L, HE Z T, et al.Structural strength analysis of the wind turbine shaft[J]. Modern scientific instruments, 2011(5): 68-72.
[2] 何大伟, 吴国庆, 陆彬, 等. 垂直轴风力发电机主轴结构优化设计[J]. 机械设计与制造, 2018(2): 199-201, 205.
HE D W, WU G Q, LU B, et al.Vertical axis wind turbine spindle structure optimization design[J]. Machinery design & manufacture, 2018(2): 199-201, 205.
[3] 汪亚洲, 胡成明. 基于ANSYS的风力发电机主轴强度分析及优化[J]. 机械研究与应用, 2019, 32(4): 48-50.
WANG Y Z, HU C M.Strength analysis and optimization of wind turbine main-shaft based on ANSYS[J]. Mechanical research & application, 2019, 32(4): 48-50.
[4] 周新建, 毛乐, 李志强. 基于结构可靠性分析的风力发电机主轴优化设计[J]. 现代制造工程, 2018(12): 89-96.
ZHOU X J, MAO L, LI Z Q.The structural reliability optimization design of wind turbine’s main shaft considering the randomness of geometry dimensions[J]. Modern manufacturing engineering, 2018(12): 89-96.
[5] 张健, 陈科任, 郑彬. 新型电动汽车车架轻量化优化设计[J]. 制造业自动化, 2019, 41(3): 89-96.
ZHANG J, CHEN K R, ZHENG B.Lightweight optimization design of new electric vehicle frame[J]. Manufacturing automation, 2019, 41(3): 89-96.
[6] 高云凯, 申振宇, 冯兆玄, 等. 多目标优化在车门轻量化设计中的应用[J]. 同济大学学报(自然科学版), 2017, 45(2): 275-280, 308.
GAO Y K, SHEN Z Y, FENG Z X, et al.Application of multi-objective optimization in vehicle door lightweight[J]. Journal of Tongji University(natural science), 2017, 45(2): 275-280, 308.
[7] 刘钊, 李晗, 朱平. 基于粒子群算法的轿车车身多学科优化设计[J]. 汽车工程, 2018, 40(3): 251-258.
LIU Z, LI H, ZHU P.Multidisciplinary design optimization of car body based on particle swarm algorithm[J]. Automotive engineering, 2018, 40(3): 251-258.
[8] 王良英. 2 MW风机轮毂的轻量化结构设计与有限元分析[D]. 乌鲁木齐: 新疆大学, 2017.
WANG L Y.Structural light-weighting design and finite analysis of 2 MW horizontal axis wind turbine hub[D]. Urumqi: Xinjiang University, 2017.
[9] Germanischer Lloyd Wind Energie GmbH. Guideline for the certification of wind turbines[S]. Germany: Germa- nischer Lloyd Wind Energie GmbH, 2010.
[10] WANG R, HUAN T, WANG W, et al.Fracture analysis and improvement of the main shaft of wind turbine based on finite element method[J]. Advance in mechanical engineering, 2018, 10(4): 1-9.
[11] 冷建成, 田洪旭, 徐爽, 等. 基于优化Kriging模型的平台结构动力学模型修正[J]. 振动与冲击, 2019, 38(18): 18-23.
LENG J C, TIAN H X, XU S, et al.Dynamics model updating of an offshore platform structure based on optimized Kriging model[J]. Journal of vibration and shock, 2019, 38(18): 18-23.
[12] 张松山, 周瑾, 张发品. 基于多目标遗传算法的磁轴承结构优化设计[J], 机械与电子, 2013(8): 3-6.
ZHANG S S, ZHOU J, ZHANG F P.Structural optimization design for magnetic bearings based on multi- objective genetic algorithm[J]. Machinery & electronics, 2013(8): 3-6.
[13] WANG P, WU G Q.Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm[J]. Chinese journal of mechanical engineering, 2013, 26(2): 304-312.
[14] CHAU N L, LE H G, DAO T-P, et al.Design and optimization for a new compliant planar spring of upper limb assistive device using hybrid approach of RSM-FEM and MOGA[J]. Arabian journal for science and engineering, 2019, 44(9): 7441-7456.
基金
国家自然科学基金(51565055); 新疆维吾尔自治区科技支疆项目(2017E0276)