建立非均质温差发电器(TEG)理论模型,考虑热电材料的非均质导热系数以及温差发电器与热源间的传热热阻的影响,分析非均质温差发电器的一般性能。讨论热电元件对数、热导率、高温热源温度对非均质温差发电器性能特性的影响。结果表明,相较于均质温差发电器,导热系数不均匀强度越大,非均质温差发电器的最大输出功率和最大效率越高;热电元件对数、热导率、高温热源温度的提高均可提升系统性能。
Abstract
The inhomogeneous thermoelectric generator model considering inhomogeneous thermal conductivity and effect of heat transfer between thermoelectric generator and heat source is established. The general performance analysis of inhomogeneous thermoelectric generator is presented. The impacts of number of thermoelectric elements, heat conductance and temperature of high temperature source on performance characteristics of inhomogeneous thermoelectric generator are discussed. The results show that,compared with homogeneous thermoelectric generator, the maximum output power and maximum efficiency of the thermoelectric generator can be effectively improved due to the increase in the inhomogeneous degree of thermal conductivity. And the performance characteristics could be enhanced with higher number of thermoelectric elements, heat conductance or temperature of high temperature source.
关键词
非均质 /
温差发电 /
转换效率 /
热阻 /
导热系数
Key words
inhomogeneous /
thermoelectricity /
conversion efficiency /
heat resistance /
thermal conductivity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TWAHA S, ZHU J, YAN Y Y, et al.A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement[J]. Renewable and sustainable energy reviews, 2016, 65: 698-726.
[2] 王军, 张超震, 董彦, 等. 温差发电模型的热电性能数值计算和分析[J]. 太阳能学报, 2019, 40(1): 44-50.
WANG J, ZHANG C X, DONG Y, et al.Numerical caculation and analysis on properties of thermoelectric generation model[J]. Acta energias solaris sinica, 2019, 40(1): 44-50.
[3] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真[J]. 物理学报, 2014, 63(19): 197201/1-197201/6.
WANG C H, LING T, ZENG Z H. Analysis and simulation of semiconductor thermoelectric power generation process[J]. Acta physica sinica, 2014, 63(19): 197201/1-197201/6.
[4] SUN X X, LIANG X Y, SHU G Q,et al.Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine[J]. Energy, 2014, 77: 489-498.
[5] CHEN L G, GONG J Z, SUN F R,et al.Effect of heat transfer on the performance of thermoelectric generators[J]. International journal of thermal sciences, 2002, 41(1): 95-99
[6] CHEN L G, LI J, SUN F R,et al. Effect of heat transfer on the performance of two-stage semiconductor thermoelectric refrigerators[J]. Journal of applied physics, 2005, 98(3): 034507/1-034507/7.
[7] GOU X L, XIAO H, YANG S W.Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied energy, 2010, 87(10): 3131-3136.
[8] MONTECUCCO A, BUCKLE J R, KNOX A R.Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices[J]. Applied thermal engineering, 2012, 35: 177-184.
[9] WANG X D, HUANG Y X, CHENG C H, et al.A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field[J]. Energy, 2012, 47(1): 488-497.
[10] LU T Y, ZHOU J, LI N B,et al.Inhomogeneous thermal conductivity enhances thermoelectric cooling[J]. AIP advances, 2014, 4(12): 124501.
[11] HU J Z, LIU B, ZHOU J, et al.Enhanced thermoelectric cooling performance with graded thermoelectric materials[J]. Japanese journal of applied physics, 2018, 57(7): 071801.
[12] KAUR J, JOHAL R S.Thermoelectric generator at optimal power with external and internal irreversibilities[J]. Journal of applied physics, 2019, 126(12): 125111.