风速差异条件下的风电场自适应频率响应控制方法

王康, 万天虎, 李华, 黄昆, 寇鹏

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 366-372.

PDF(2606 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2606 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 366-372. DOI: 10.19912/j.0254-0096.tynxb.2020-0584

风速差异条件下的风电场自适应频率响应控制方法

  • 王康1, 万天虎2, 李华2, 黄昆3, 寇鹏3
作者信息 +

ADAPTIVE WIND FARM FREQUENCY RESPONSE CONTROL CONSIDERING UNEVEN WIND SPEED

  • Wang Kang1, Wan Tianhu2, Li Hua2, Huang Kun3, Kou Peng3
Author information +
文章历史 +

摘要

提出一种适用于大型风电场的自适应频率响应控制方法,使风电场能参与电力系统频率调节。低频事件发生后,每台风电机组的下垂控制系数均根据其本地实时风速和功率裕度呈反比例自适应调节。高频事件发生后,每台风电机组的高频响应控制增益随其本地实时风速自适应调节。由此,风电场频率响应支撑功率可自适应的在多台风速各异的风电机组之间实现合理分配。该方法充分考虑频率响应过程中多台风电机组之间的风速差异,不仅可提高风电场整体的频率响应能力,而且可确保频率响应过程中每台风电机组的稳定运行。在Matlab环境下进行相关仿真实验,结果验证了所提控制策略的有效性。

Abstract

This paper presents an adaptive frequency response control scheme for the large scale wind farm. This scheme enables wind farm to participate the grid frequency regulation. The main advantage of this scheme is that, during the frequency response, by adaptively adjusting the droop coefficient and control gain according to local wind speeds, this scheme takes into account the wind speed difference among wind generators. Specifically, the droop coefficient of each wind generator is dynamically adjusted inversely proportionally to the local power margin, while the over-frequency control gain is obtained by solving a linear programming problem, which is also formed based on the local wind speed. This way, during the frequency support, the power contribution is allocated among multiple wind generators in an adaptive and reasonable fashion. As a result, not only the wind farm frequency support performance is improved, but also the wind generator stability is ensured. Simulation results on the data collected from a real wind farm validate the effectiveness of the proposed control scheme.

关键词

频率响应 / 风电场 / 风电机组 / 风速 / 电力系统

Key words

frequency response / wind farm / wind turbines / wind speed / power system

引用本文

导出引用
王康, 万天虎, 李华, 黄昆, 寇鹏. 风速差异条件下的风电场自适应频率响应控制方法[J]. 太阳能学报. 2022, 43(3): 366-372 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0584
Wang Kang, Wan Tianhu, Li Hua, Huang Kun, Kou Peng. ADAPTIVE WIND FARM FREQUENCY RESPONSE CONTROL CONSIDERING UNEVEN WIND SPEED[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 366-372 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0584
中图分类号: TM614   

参考文献

[1] BEVRANI H.Robust power system frequency control[M]. New York: Springer Science, 2009.
[2] ULLAH N R, THIRINGER T, KARLSSON D.Temporary primary frequency control support by variable speed wind turbines potential and applications[J]. IEEE transactions on power systems, 2008, 23(2): 601-612.
[3] OCHOA D, MARTINEZ S.Fast-frequency response provided by DFIG-wind turbines and its impact on the grid[J]. IEEE transactions on power systems, 2017, 32(5): 4002-4011.
[4] GARMROODI M, VERBIC G, HILL J D.Frequency support from wind turbine generators with a time variable droop characteristic[J]. IEEE transactions on sustainable energy, 2018, 9(2): 676-684.
[5] KAYIKCI M, MILANOVIC V J.Dynamic contribution of DFIG-based wind plants to system frequency disturbances[J]. IEEE transactions on power systems, 2009, 24(2): 859-867.
[6] RAMTHARAN G, EKANAYAKE J, JENKINS N.Frequency support from doubly fed induction generator wind turbines[J]. IET renewable power generation, 2007, 1(1): 3-9.
[7] GENG H, XI X Z, LIU L, et al.Hybrid modulated active damping control for DFIG based wind farm participating in frequency response[J]. IEEE transactions on energy conversion, 2017, 32(3): 1220-1230.
[8] 苑晨阳, 李静, 陈健云, 等. 大型风电机组变桨距ABC-PID控制研究[J]. 太阳能学报, 2019, 40(10): 3002-3008.
YUAN C Y, LI J, CHEN J Y, et al.Research on ABC-PID pitch control of large-scale wind turbines[J]. Acta energiae solaris sinica, 2019, 40(10): 3002-3008.
[9] 王义, 江汉红, 邢鹏翔. 风电机组虚拟惯量一阶自抗扰控制研究[J]. 太阳能学报, 2020, 41(4): 153-163.
WANG Y, JIANG H H, XING P X.Research of wind turbine virtual inertia first-order active disturbance rejection control[J]. Acta energiae solaris sinica, 2020, 41(4): 153-163.
[10] LEE J, JANG G, MULJADI E, et al.Stable short-term frequency support using adaptive gains for a DFIG-based wind power plant[J]. IEEE transactions on energy conversion, 2016, 31(3): 1068-1079.
[11] LIU X J, ZHANG Y, LEE K Y.Coordinated distributed MPC for load frequency control of power system with wind farms[J]. IEEE transactions on industrial electronics, 2017, 64(6): 5140-5150.
[12] KOU P, LIANG D D, WU Z H.Frequency support from a DC-Grid offshore wind farm connected through an HVDC link: a communication-free approach[J]. IEEE transactions on energy conversion, 2018, 33(3): 1297-1310.
[13] 田宽引, 王鹏, 韩肖清, 等. 电力系统次同步振荡对风力发电机轴系疲劳损伤影响的可靠性分析[J]. 太阳能学报, 2017, 38(3): 586-592.
TIAN K Y, WANG P, HAN X Q, et al.Fatigue reliability analysis of wind turbines shafts caused by sub-synchronous oscillations during power system faults[J]. Acta energiae solaris sinica, 2017, 38(3): 586-592.
[14] NETZ E O.Grid code: high and extra high voltage[S]. GmbH Bayreuth,Germany, 2006.

基金

国家电网陕西省电力公司科技项目(SGSNKY00DYJS1900288)

PDF(2606 KB)

Accesses

Citation

Detail

段落导航
相关文章

/