海上风电多端柔性直流并网系统频率支持研究

陈鹤林, 郑晓云

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 356-365.

PDF(2331 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2331 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 356-365. DOI: 10.19912/j.0254-0096.tynxb.2020-0593

海上风电多端柔性直流并网系统频率支持研究

  • 陈鹤林, 郑晓云
作者信息 +

RESEARCH ON FREQUENCY SUPPORT OF OFFSHORE WIND POWER VSC-MTDC GRID CONNECTED SYSTEM

  • Chen Helin, Zheng Xiaoyun
Author information +
文章历史 +

摘要

针对海上风电多端柔性直流(VSC-MTDC)并网系统,重点研究风电VSC-MTDC对岸上电网调频功能。通过建立详细风电场、换流站和电网模型,提出一种适用于海上风电VSC-MTDC并网系统动态频率调节方法,即改进斜率控制。整个海上风电场VSC-MTDC加入改进斜率控制后,可使有功功率在若干岸上换流站之间合理分配,从而确保相应岸上电网有功功率平衡,实现VSC-MTDC对于岸上电网频率调节,提升电网频率稳定性。同时给出风电VSC-MTDC对于电网调频的量化指标,即参与调频贡献指数和参与调频能力指数,分别反映VSC-MTDC参与电网调频贡献的能量和瞬时调频能力。在PSCAD/EMTDC仿真平台下搭建一个四端海上风电VSC-MTDC并网系统的仿真模型,并进行动态仿真,其中一个岸上电网发生负荷变化、频率偏移时,风电VSC-MTDC系统实现电网调频控制,仿真结果验证所提并控制方法可为电网频率稳定提供帮助。

Abstract

This paper focused on the offshore wind power voltage sourced converter based multi-terminal high voltage direct current transmission (VSC-MTDC) grid connected system. The frequency modulation function of wind power VSC-MTDC for onshore power grid was mainly studied. Detailed wind farm, converter station and power grid model were established. A dynamic frequency modulation method for VSC-MTDC grid connected offshore wind power system, named improved slope control was proposed. The whole offshore wind farm VSC-MTDC was added with the improved slope control. Active power among several shore converter stations could be reasonable distributed. Active power balance of corresponding onshore power grid could be ensured. Frequency modulation of VSC-MTDC for onshore power grid was realized. Frequency stability of power grid was improved. At the same time, the quantitative index of wind power VSC-MTDC for power grid frequency modulation was given. Participating frequency modulation contribution index and participating frequency modulation capability index respectively reflected the energy and instantaneous frequency modulation capability of VSC-MTDC participating in power grid frequency modulation. Based on PSCAD / EMTDC simulation platform, a simulation model of four terminal offshore wind power VSC-MTDC grid connected system was built. The dynamic simulation was conducted. When one of the onshore power grid load changes and frequency offsets, corresponding frequency modulation control of wind power VSC-MTDC system was activated. Simulation results showed that the proposed control method could help the frequency stability and transient stability of power grid.

关键词

海上风电场 / 多端柔性直流输电 / 改进斜率控制 / 动态调频 / 暂态稳定

Key words

offshore wind farms / voltage sourced converter based multi-terminal high voltage direct current transmission(VSC-MTDC) / improved slope control / dynamic frequency scaling / transient stability

引用本文

导出引用
陈鹤林, 郑晓云. 海上风电多端柔性直流并网系统频率支持研究[J]. 太阳能学报. 2022, 43(3): 356-365 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0593
Chen Helin, Zheng Xiaoyun. RESEARCH ON FREQUENCY SUPPORT OF OFFSHORE WIND POWER VSC-MTDC GRID CONNECTED SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 356-365 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0593
中图分类号: TM614   

参考文献

[1] 周双喜, 鲁宗相. 风力发电与电力系统[M]. 北京: 中国电力出版社, 2011.
ZHOU S X, LU Z X.Wind power generation and power system[M]. Beijing: China Electric Power Press, 2011.
[2] 陈鹤林, 徐政. 海上风电场柔性直流输电并网系统暂态特性研究[J]. 太阳能学报, 2015, 36(2): 430-439.
CHEN H L, XU Z.Study on transient behavior of DC flexible on-grid transmission system in offshore wind farm[J]. Acta energiae solaris sinica, 2015, 36(2): 430-439.
[3] 陈鹤林, 徐政, 薛英林, 等. 风电场C-MMC-HVDC并网系统直流故障穿越研究[J]. 太阳能学报, 2016, 37(8): 2095-2103.
CHEN H L, XU Z, XUE Y L, et al.Research on DC fault ride through control method of wind farm integration system with C-MMC-HVDC[J]. Acta energiae solaris sinica, 2016, 37(8): 2095-2103.
[4] 陈鹤林, 徐政, 唐庚, 等. 海上风电场MMC-HVDC并网系统暂态行为分析[J]. 电力系统自动化, 2014, 38(12): 112-118.
CHEN H L, XU Z, TANG G, et al.Transient behavior analysis of offshore wind farm integration system with MMC-HVDC[J]. Automation of electric power systems, 2014, 38(12): 112-118.
[5] LIANG J, JING T, GOMIS-BELLMUNT O, et al.Operation and control of multiterminal HVDC transmission for offshore wind farms[J]. IEEE transactions on power delivery, 2011, 26(4): 2596-2604.
[6] 辛业春, 王威儒, 李国庆, 等. 海上风电MMC-HVDC联网系统控制策略[J]. 太阳能学报, 2019, 40(6): 1731-1738.
XIN Y C, WANG W R, LI G Q, et al.Control strategy on grid connected offshore wind farm based on MMC-HVDC[J]. Acta energiae solaris sinica, 2019, 40(6): 1731-1738.
[7] 徐政. 柔性直流输电系统[M]. 第2版. 北京: 机械工业出版社, 2017.
XU Z.Flexible DC transmission system[M]. 2nd Ed. Beijing: China Machine Press, 2017.
[8] 索之闻, 李庚银, 迟永宁, 等. 适用于海上风电的多端口直流变电站及其主从控制策略[J]. 电力系统自动化, 2015, 39(11): 16-23.
SUO Z W, LI G Y, CHI Y N, et al.Multi-port DC substation for offshore wind farm integration and its master-slave control[J]. Automation of electric power systems, 2015, 39(11): 16-23.
[9] 吴俊宏, 艾芊. 多端柔性直流输电系统在风电场中的应用[J]. 电网技术, 2009, 33(4): 22-27.
WU J H, AI Q.Research on multiterminal VSC-HVDC system for wind-farms[J]. Power system technology, 2009, 33(4): 22-27.
[10] 陈树勇, 徐林岩, 孙栩, 等. 基于多端柔性直流输电的风电并网控制研究[J]. 中国电机工程学报, 2014, 34(S1): 32-38.
CHEN S Y, XU L Y, SUN X, et al.The control of wind power integration based on multi-terminal high voltage DC transmission with voltage source converter[J]. Proceedings of the CSEE, 2014, 34(S1): 32-38.
[11] 姚美齐, 李乃湖. 欧洲超级电网的发展及其解决方案[J]. 电网技术, 2014, 38(3): 549-555.
YAO M Q, LI N H.An introduction to European supergrid and its solutions[J]. Power system technology, 2014, 38(3): 549-555.
[12] 王新颖, 汤广福, 贺之渊, 等. 远海风电场直流汇集用DC/DC变换器拓扑研究[J]. 中国电机工程学报, 2017, 37(3): 837-848.
WANG X Y, TANG G F, HE Z Y, et al.Topology research of DC/DC converters for offshore wind farm DC collection systems[J]. Proceedings of the CSEE, 2017, 37(3): 837-848.
[13] 姬煜轲, 赵成勇, 李承昱, 等. 含新能源接入的柔性直流电网启动策略及仿真[J]. 电力系统自动化, 2017, 41(4): 98-104.
JI Y K, ZHAO C Y, LI C Y, et al.Start-up strategy and simulation of flexible DC grid with renewable energy source[J]. Automation of electric power systems, 2017, 41(4): 98-104.
[14] 李程昊, 詹鹏, 文劲宇, 等. 适用于大规模风电并网的多端柔性直流输电系统控制策略[J]. 电力系统自动化, 2015, 39(11): 1-7.
LI C H, ZHAN P, WEN J Y, et al.A multi-terminal VSC-HVDC system control strategy for large wind farms integration[J]. Automation of electric power systems, 2015, 39(11): 1-7.
[15] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
ZHANG L Y, YE T L, XIN Y Z, et al.Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[16] BIANCHI F D, DOMNGUEZ-GARCA J L. Coordinated frequency control using MT-HVDC grids with wind power plants[J]. IEEE transactions on sustainable energy, 2016, 7(1): 213-220.
[17] 姚良忠, 吴婧, 鲁宗相, 等. 含大规模风电场接入的多端直流系统对交流系统频率调节的作用[J]. 高电压技术, 2016, 42(10): 3038-3044.
YAO L Z, WU J, LU Z X, et al.Effect of MTDC system integrating large scale wind power on AC system frequency control[J]. High voltage engineering, 2016, 42(10): 3038-3044.
[18] SILVA B, MOREIRA C L, SECA L, et al.Provision of inertial and primary frequency control services using offshore multiterminal HVDC networks[J]. IEEE transactions on sustainable energy, 2012, 3(4): 800-808.
[19] 朱瑞可, 李兴源, 应大力. VSC-MTDC互联系统频率稳定控制策略[J]. 电网技术, 2014, 38(10): 2729-2734.
ZHU R K, LI X Y, YING D L.A frequency stability control strategy for interconnected VSC-MTDC transmission system[J]. Power system technology, 2014, 38(10): 2729-2734.
[20] 田园园, 廖清芬, 刘涤尘, 等. 基于VSC-HVDC的风电分散并网下垂控制策略[J]. 电力系统自动化, 2016, 40(3): 103-109.
TIAN Y Y, LIAO Q F, LIU D C, et al.Droop control strategy for wind power decentralized integration based on VSC-HVDC systems[J]. Automation of electric power systems, 2016, 40(3): 103-109.
[21] LI C H, ZHAN P, WEN J Y, et al.Offshore wind farm integration and frequency support control utilizing hybrid multiterminal HVDC transmission[J]. IEEE transactions on industry applications, 2014, 50(4): 2788-2797.
[22] ADEUYI O D, CHEAH-MANE M, LIANG J, et al.Fast frequency response from offshore multi-terminal VSC-HVDC schemes[J]. IEEE transactions on power delivery, 2017, 32(6): 2442-2452.
[23] TANG G, XU Z, DONG H F, et al.Sliding mode robust control based active-power modulation of multi-terminal HVDC transmissions[J]. IEEE transactions on power systems, 2016, 31(2): 1614-1623.
[24] DONG H F, XU Z, SONG P C, et al.Optimized power redistribution of offshore wind farms integrated VSC-MTDC transmissions after onshore converter outage[J]. IEEE transactions on industrial electronics, 2017, 64(11): 8948-8958.
[25] HAILESELASSIE T M, UHLEN K.Power system security in a meshed North Sea HVDC grid[J]. Proceedings of the IEEE, 2013, 101(4): 978-990.
[26] 付媛, 王毅, 张祥宇, 等. 基于多端直流联网的风电功率协调控制[J]. 高电压技术, 2014, 40(2): 611-619.
FU Y, WANG Y, ZHANG X Y, et al.Coordinated control of wind power in multi-terminal DC transmission system[J]. High voltage engineering, 2014, 40(2): 611-619.

基金

国家高技术研究发展(863)计划(2012AA051704); 国家电网公司总部科技项目(SGCC-HRP031-2015)

PDF(2331 KB)

Accesses

Citation

Detail

段落导航
相关文章

/