长方体建筑长宽比对屋顶风力机微观选址的影响

邸建琛, 侯亚丽, 吕爱静, 李荣阳, 汪建文

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 296-303.

PDF(3082 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3082 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 296-303. DOI: 10.19912/j.0254-0096.tynxb.2020-0606
电化学储能安全性与退役动力电池梯次利用关键技术专题

长方体建筑长宽比对屋顶风力机微观选址的影响

  • 邸建琛1, 侯亚丽1,2, 吕爱静1, 李荣阳1, 汪建文1,2
作者信息 +

INFLUENCE OF CUBOID BUILDINGS HORIZONTAL ASPECT RATIOS ONMICRO-SITING SELECTION OF ROOFTOP WIND TURBINE

  • Di Jianchen1, Hou Yali1,2, Lyu Aijing1, Li Rongyang1, Wang Jianwen1,2
Author information +
文章历史 +

摘要

采用CFD方法,对长宽比分别为0.25、0.30、0.40、0.50、0.60、0.70、0.80、0.90的8种长方体单体高层建筑物顶面的风流场特征进行模拟计算,确定长宽比对长方体建筑物顶面风力机微观选址的影响。结果表明:长宽比越大,建筑顶面低风速区域越大,且风速随高度增长得越慢,而迎风面拐点风速恢复最快;同时由于建筑物顶面受阻滞流体增多,湍流强度增大,湍流强度大于20%的区域面积增大,且背风面及背风面拐点湍流强度最大;长宽比越小,适合安装风力机的高度越低,如长宽比HAR=0.25时,最低安装高度为1.12H;当长宽比HAR=0.9时,最低安装高度为1.20H;对于不同长宽比的长方体建筑物,在屋顶迎风面出现风加速的起始高度一般低于背风面位置,更有利于风力机的安装。

Abstract

To determine the suitable mounting location and height of the roof-mounted wind turbine, the turbulence characteristics over eight horizontal aspect ratio cuboid buildings were simulated via the computational fluid dynamic(CFD)method, in which the horizontal aspect rate are 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 0.90, respectively. The results show that when horizontal aspect ratio increases and the cross-sectional shape of a cuboid building becomes closer to the square,the larger area of low wind speed at the top of the building,and the wind speed increases more slowly with height, while the wind speed recovers fastest at the windward corner. At the same time, the turbulence intensity increases due to the increase of stagnant fluid at the top of the building, and the area of turbulence intensity greater than 20%, the turbulence intensity at the leewardside and leeward inflection point is the highest. The smaller the horizontal aspect ratio is, the lower the suitable height for wind turbine installation is lower, for example, when the aspect ratio is 0.25, the minimum installation height is 1.12H; when the horizontal aspect ratio is 0.9, the minimum installation height is 1.20H; For cuboid buildings with different horizontal aspect ratios, the starting height of wind acceleration on the windward side of the roof is generally lower than that on the leeward side, which is more conducive to the installation of wind turbines.

关键词

风力机 / 建筑物 / 湍流强度 / 风速 / 微观选址

Key words

wind turbines / buildings / turbulence intensity / wind speed / micrositing

引用本文

导出引用
邸建琛, 侯亚丽, 吕爱静, 李荣阳, 汪建文. 长方体建筑长宽比对屋顶风力机微观选址的影响[J]. 太阳能学报. 2022, 43(4): 296-303 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0606
Di Jianchen, Hou Yali, Lyu Aijing, Li Rongyang, Wang Jianwen. INFLUENCE OF CUBOID BUILDINGS HORIZONTAL ASPECT RATIOS ONMICRO-SITING SELECTION OF ROOFTOP WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 296-303 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0606
中图分类号: TK513   

参考文献

[1] FRANCISCO T S, TAKAAKI K, CARLOS P, et al. A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 180(2): 66-87.
[2] FRANCISCO T, CARLOS P, OSCAR L, et al. On roof geometry for urban wind energy exploitation in high-rise buildings[J]. Computation, 2015, 3(2): 299-325.
[3] ABOHELA I, HAMZA N, DUDEK S.Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines[J]. Renewable energy, 2013, 50(3): 1106-1118.
[4] LU L, IP K Y.Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong[J]. Renewable & sustainable energy reviews, 2009, 13(2): 450-461.
[5] 张玉.风能利用建筑的风能利用效能研究与结构分析[D]. 杭州: 浙江大学, 2011.
ZHANG Y.Wind-energy efficiency study and structural analysis of building integrated/mounted wind turbines[D]. Hangzhou: Zhejiang University, 2011.
[6] TOJA-SILVA F, LOPEZ-GARCIA O, PERALTA C, et al. An empirical-heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings[J]. Applied energy, 2016, 164(15): 769-794.
[7] TAKAAKI K, TETSUYA K,KIWATA T, et al. Numerical investigation of wind conditions for roof-mounted wind turbines: effects of wind direction and horizontal aspect ratio of a high-rise cuboid building[J]. Energies, 2016, 9: 907-927.
[8] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for building structures[S].
[9] WANG B, COT L D, ADOLPHE L, et al. Estimation of wind energy over roof of two perpendicular buildings[J]. Energy and buildings, 2015, 88(2): 57-67.
[10] RICCI A, BURLANDO M, FREDA A, et al. Wind tunnel measurements of the urban boundary layer development over a historical district in Italy[J]. Building and environment, 2016, 111(3): 192-206.
[11] MILLWARD H J T, TOMLIN A S, MA L, et al. Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights[J]. Boundary-layer meteorology, 2011, 141(3): 443-465.
[12] IEC 61400-61401, Wind turbine generator systems-part 1: Safety requirements[S].

基金

内蒙古自治区自然科学基金(2019LH05024)

PDF(3082 KB)

Accesses

Citation

Detail

段落导航
相关文章

/