以某型8 MW风力发电机组塔筒为对象,采用有限元方法开展超大功率风力发电机组塔筒屈曲特性分析。建立塔筒门洞段有限元模型,研究门框对塔筒屈曲稳定性的影响,结果表明:门洞加框能提高塔筒屈曲稳定性。为进一步提高塔筒屈曲稳定性,提出塔筒内壁设置加强筋的强化设计方法,研究加筋数目、加筋尺寸与塔筒屈曲稳定性的作用规律,结果表明:环筋数目为2、加筋尺寸为160 mm×18 mm时,加强方案最佳,塔筒的1阶屈曲特征值可提高55%。对带加强筋塔筒开展非线性屈曲分析,结果表明:塔筒临界屈曲载荷计算时不能忽略材料塑性、几何非线性以及初始缺陷的影响;初始缺陷程度的增加会导致塔筒临界屈曲载荷急剧下降,塔筒制造时应尽量降低初始缺陷程度。
Abstract
Taking a certain type of 8 MW wind turbine tower as the research object, this paper provides a detailed analysis of buckling features of large wind turbine towers by applying the finite element method. A finite element model of the gate section of the tower is established to study the influence of the door frame on the buckling stability of the tower. The results show that adding a frame to the gate can improve the buckling stability of the tower. In order to further improve the buckling stability of the tower, an updated design method to equip stiffeners on the inner wall of the tower, is proposed, in which the influences of the number and size of stiffeners on the buckling stability of the tower is researched. It is found that the best buckling stability of the tower can be achieved when two ring reinforcements with a dimension of 160 mm×18 mm are used, which means a 55% increase of the first-order buckling eigenvalue. It also carries out a nonlinear buckling analysis of the tower with stiffeners, showing that the influence of material plasticity, geometric nonlinearity, and initial defects cannot be neglected in the calculation of the critical buckling load of the tower. The critical buckling load will decrease sharply when the initial defect degree in creases. Therefore, the initial defect degree should be minimized during the manufacturing process of the tower.
关键词
风力发电机 /
塔筒 /
非线性分析 /
屈曲
Key words
wind turbines /
towers /
nonlinear analysis /
buckling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SEBASTIAN P M.Non-linear buckling and postbuckling behavior of thin-walled beams considering shear deformation[J]. International journal of non-linear mechanics, 2008, 43: 345-365.
[2] 潘方树, 王法武, 柯世堂, 等. 考虑缺陷的大型风力机塔筒屈曲分析与稳定性设计[J]. 太阳能学报, 2017, 38(10): 2659-2664.
PAN F S, WANG F W, KE S T, et al. Buckling analysis and stability design of wind turbine tower with geometic imperfections[J]. Acta energiae solaris sinica, 2017, 38(10): 2659-2664.
[3] 赵世林, 李德源, 黄小华.风力机塔架在偏心载荷作用下的屈曲分析[J]. 太阳能学报, 2010, 31(7): 117-122.
ZHAO S L, LI D Y, HUANG X H.Buckling analysis of wind turbine tower under eccentric loading[J]. Acta energiae solaris sinica, 2010, 31(7): 117-122.
[4] 易权, 蔡全, 尚刚, 等. 风力发电机组塔筒门框段屈曲分析[J]. 电气与自动化, 2012, 41(4): 212-214.
YI Q, CAI Q, SHANG G, et al. Buckling analysis of wind turbine tower doorframe[J]. Electrical and automation, 2012, 41(4): 212-214.
[5] 龙凯, 吴继秀, 桑鹏飞.大型水平轴风力机筒门洞屈曲分析研究[J]. 现代电力, 2013, 30(1): 90-94.
LONG K, WU J X, SANG P F.Research on the door buckling strength of horizontal axis wind turbine tower[J]. Modern electric power, 2013.30(1): 90-94.
[6] 高裕贤.不同方向开门洞对塔筒屈曲强度的影响[J]. 硅谷, 2015(3): 22-24.
GAO Y X.Effect of opening door in different directions on buckling strength of tower[J]. Silicon valley, 2015(3): 22-24.
[7] 李剑波, 李学旺, 黄冬明.风电塔筒屈曲承载能力提高方法研究[J]. 风能, 2018(1): 66-69.
LI J B, LI X W, HUANG D M.Research on the method to improve the buckling capacity of wind tower[J]. Wind energy, 2018(1): 66-69.
[8] 郑甲红, 柳毅, 杜翠.兆瓦级风力发电机塔筒的有限元分析[J]. 机械设计与制造, 2010(12): 26-27.
ZHENG J H, LIU Y, DU C.Finite element analysis for the tower of megawatt wind turbine[J]. Machinery design and manufacture, 2010(12): 26-27.
[9] 孟令锐, 何海建, 杨扬, 等. 基于响应面法的风力发电机组塔筒门框多目标优化研究[J]. 机电工程, 2018, 35(4): 369-374.
MENG L R, HE H J, YANG Y, et al. Multi-objective optimization of the wind turbine tower door frame based on response surface[J]. Journal of mechanical and electrical engineering, 2018, 35(4): 369-374.
[10] 姚激, 张炳权, 曹亮, 等. 不同分析方法对风力机塔筒动力特性的研究[J]. 河北科技大学学报, 2015, 36(4): 401-406.
YAO J, ZHANG B Q, CAO L, et al. Research on dynamic characteristics of wind turbine tower with different analysis methods[J]. Journal of Hebei University of Science and Technology, 2015, 36(4): 401-406.
[11] 朱志松, 朱龙彪, 季采云.风波联合载荷下海上风力机塔筒的疲劳寿命预测[J]. 机械科学与技术, 2013, 32(5): 714-717.
ZHU Z S, ZHU L B, JI C Y.Fatigue life prediction of the offshore wind turbine tower under combining load of wind and wave[J]. Mechanical science and technology, 2013, 32(5): 714-717.
[12] 周炬.ANSYS Workbench有限元分析实例讲解(静力学)[M]. 北京: 人民邮电出版社, 2017.
ZHOU J.ANSYS workbench explanation of finite element analysis examples(statics)[M]. Beijing: People’s Post and Telecommunications Press, 2017.
[13] TIMOSHENKO S P, GERE J M.Theory of elastic stability[M]. 2nd edition.New York: Mc Graw-Hill Book Company, 1961.
[14] 苗占元.风力机塔架的动态性能及稳定性研究[D]. 包头: 内蒙古科技大学, 2012.
MIAO Z Y.Study on dynamic performance and stability of wind turbine tower[D]. Baotou: Inner Mongolia University of Science and Technology, 2012.
[15] CARRERA E.A study on arc-length-type methods and their operation failures illustrated by a simple model[J]. Computers & structures, 1994, 50(2): 217-229.
基金
国家自然科学基金(51875193); 湖南省自然科学基金(2019JJ60039)