[1] 马溪原. 含风电电力系统的场景分析方法及其在随机优化中的应用[D]. 武汉: 武汉大学, 2014. MA X Y.Scenario analysis and stochastic programming of wind-integrated power systems[D]. Wuhan: Wuhan University, 2014. [2] 樊磊. 分布式光伏电源并网出力概率分布模型的研究[D]. 北京: 华北电力大学, 2012. FAN L.Research on probabilistic distribution model of on-grid distributed photovoltaic power[D]. Beijing: North China Electric Power University, 2012. [3] 张成炬, 蒋铁铮, 马瑞. 含风电场电力系统的静态电压稳定评估[J]. 电力系统及其自动化学报, 2018, 30(4): 104-108. ZHANG C J, JIANG T Z, MA R.Assessment on static voltage stability for power system containing wind farms[J]. Proceedings of the CSU-EPSA, 2018, 30(4): 104-108. [4] 周艳, 赵晋泉, 胡晓飞, 等. 基于场景分区的半不变量法概率电压稳定评估[J]. 电网技术, 2020, 44(7): 2617-2623. ZHOU Y, ZHAO J Q, HU X F, et al.Probabilistic voltage stability assessment using scenario partition based cumulant method[J]. Power system technology, 2020, 44(7): 2617-2623. [5] 周玮, 彭昱, 孙辉, 等. 一种用于含风电场电力系统电压稳定概率分析的混合方法[J]. 继电器, 2008, 36(2): 26-30, 53. ZHOW W, PENG Y, SUN H, et al.A mixed method for voltage stability probabilistic analysis of power systems containing wind energy[J]. Relay, 2008, 36(2): 26-30, 53. [6] 艾小猛, 文劲宇, 吴桐, 等. 基于点估计和Gram-Charlier展开的含风电电力系统概率潮流实用算法[J]. 中国电机工程学报, 2013, 33(16): 16-22. AI X M, WEN J Y, WU T, et al.A practical algorithm based on point estimate method and gram-charlier expansion for probabilistic load flow calculation of power systems incorporating wind power[J]. Proceedings of the CSEE, 2013, 33(16): 16-22. [7] 丁明, 李生虎, 黄凯. 基于蒙特卡罗模拟的概率潮流计算[J]. 电网技术, 2001, 25(11): 10-14, 22. DING M, LI S H, HUANG K.Probabilistic load flow analysis based on monte-carlo simulation[J]. Power system technology, 2001, 25(11): 10-14, 22. [8] 朱星阳, 刘文霞, 张建华. 考虑大规模风电并网的电力系统随机潮流[J]. 中国电机工程学报, 2013, 33(7): 77-85. ZHU X Y, LIU W X, ZHANG J H.Probabilistic load flow method considering large-scale wind power integration[J]. Proceedings of the CSEE, 2013, 33(7): 77-85. [9] 赵维娟. 基于潮流算法的静态电压稳定性分析方法研究[D]. 太原: 太原理工大学, 2014. ZHAO W J.Research on static voltage stabilirt analysis method based power flow algorithm[D]. Taiyuan: Taiyuan University of Technology, 2014. [10] 曾江, 蔡东阳, 黄德华. 基于半不变量及最大熵的概率谐波潮流算法[J]. 电力系统自动化, 2018, 42(13): 169-174. ZENG J, CAI D Y, HUANG D H.Probabilistic harmonic power flow algorithm based on cumulant and maximum entropy[J]. Automation of electric power systems, 2018, 42(13): 169-174. [11] 张儒峰, 姜涛, 李国庆, 等. 基于最大熵原理的电-气综合能源系统概率能量流分析[J]. 中国电机工程学报, 2019, 39(15): 4430-4441. ZHANG R F, JIANG T, LI G Q, et al.Maximum entropy based probabilistic energy flow calculation for integrated electricity and natural gas systems[J]. Proceedings of the CSEE, 2019, 39(15): 4430-4441. [12] 蔡东阳. 基于随机分析方法的概率谐波潮流计算[D]. 广州: 华南理工大学, 2017. CAI D Y.Probabilistic harmonic power flow algorithm based on stochastic analysis methods[D]. Guangzhou: South China University of Technology, 2017. [13] 于晗, 钟志勇, 黄杰波, 等. 采用拉丁超立方采样的电力系统概率潮流计算方法[J]. 电力系统自动化, 2009,33(21): 32-35, 81. YU H, ZHONG Z Y, HUANG J B, et al.A probabilistic load flow calculation method with latin hypercube sampling[J]. Automation of electric power systems, 2009, 33(21): 32-35, 81. [14] SHU Z, JIRUTITIJAROEN P, LEITE DA SILVA A M, et al. Accelerated state evaluation and latin hypercube sequential sampling for composite system reliability assessment[J]. IEEE transactions on power systems, 2014, 29(4): 1692-1700. [15] 孙锐. 风电并网静态电压稳定分析及风电接入能力计算[D]. 济南: 山东大学, 2014. SUN R.Static voltage stability analysis and accommodating capacity calculation of wind power integrated system[D]. Ji’nan: Shandong University, 2014. [16] 连浩然, 周保荣, 秦鹏, 等. 基于场景分区的随机潮流解析算法[J]. 电网技术, 2017, 41(10): 3153-3160. LIAN H R, ZHOU B R, QIN P, et al.Probabilistic power flow analytic algorithm based on scenario partition[J]. Power system technology, 2017, 41(10): 3153-3160. [17] GREENE S, DOBSON I, ALVARADO F L.Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters[J]. IEEE transactions on power systems, 1997, 12(1): 262-272. [18] 卫鹏, 刘建坤, 周前, 等. 基于半不变量和Gram-Charlier级数展开法的随机潮流算法[J]. 电力工程技术, 2017, 36(1): 34-38. WEI P, LIU J K, ZHOU Q, et al.A probabilistic power flow algorithm based on semi-variable and Gram-Charlier series expansion[J]. Electric power engineering technology, 2017, 36(1): 34-38. |