双面光伏组件发电性能影响因素理论与实验研究

张臻, 王磊, 秦志光, 伍敏燕, 许传佳, 全鹏

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 171-179.

PDF(1903 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1903 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 171-179. DOI: 10.19912/j.0254-0096.tynxb.2020-0634

双面光伏组件发电性能影响因素理论与实验研究

  • 张臻1,2, 王磊2, 秦志光2, 伍敏燕2, 许传佳2, 全鹏3
作者信息 +

THEORETICAL AND EXPERIMENTAL STUDY ON INFLUENCING FACTORS OF BIFACIAL PHOTOVOLTAIC MODULES FIELD PERFORMANCE

  • Zhang Zhen1,2, Wang Lei2, Qin Zhiguang2, Wu Minyan2, Xu Chuanjia2, Quan Peng3
Author information +
文章历史 +

摘要

基于视角系数模型,理论计算与实验分析双面光伏组件的背面辐照度分布,根据组件背面的辐照度模型和太阳电池等效电路的单二极管模型,采用I-V曲线叠加法计算其微失配损耗;并提出简化反射光谱模型准确计算反射太阳光谱,以光谱失配因子量化反射光谱对双面组件背面发电性能的影响,结合组件背面辐射视角系数模型,建立双面组件背面功率输出的计算方法。针对影响双面光伏组件发电性能影响因素,进行仿真和实验,结果表明:双面光伏组件的因背面辐照不均匀引起的微失配损失一般小于3.0%,草地、水泥地面、雪地的损失分别为0.3%~0.5%、0.5%~1.0%、1.0%~3.0%,由于光伏组件安装架的遮挡,微失配损失将增加0.5%~3.3%;不同安装地面下,双面光伏组件背面反射光谱差异大,通过反射光谱修订能将双面光伏组件背面功率预测准确率由76.3%提升到92.3%。

Abstract

Based on the view factor model,the irradiance distribution on the back of the bifacial photovoltaic module is investigated in this paper. According to the irradiance distribution calculation and the single diode electrical model of the equivalent circuit of the photovoltaic module,the power loss caused by micro-mismatch is simulated by using the I-V curve superposition method. A simple and accurate reflection spectrum model is proposed to calculate the reflection spectrum, and the effect of the reflection spectrum on the bifacial module output performance is quantified by the spectrum mismatch factor. Considering the factors affecting the power output of bifacial modules, simulations and experiments are carried out. The results show that the micro-mismatch loss caused by non-uniform irradiance distribution of module backside is generally less than 3.0%, while the mismatch losses in condition of grassland, concrete ground and snow are respectively It is 0.3%-0.5%, 0.5%-1.0%, 1.0%-3.0%. Due to the shading of the photovoltaic module mounting frame, the micro-mismatch loss increases by 0.5%-3.3%. The reflection spectrum is quite different in different module installation grounds. Through the modification of the reflection spectrum factor,the accuracy of the power prediction of the bifacial photovoltaic module can be increased from 76.3% to 92.3%.

关键词

辐照 / 光谱分析 / 输出功率 / 双面光伏组件

Key words

irradiation / spectrum analysis / power generation / bifacial photovoltaic modules

引用本文

导出引用
张臻, 王磊, 秦志光, 伍敏燕, 许传佳, 全鹏. 双面光伏组件发电性能影响因素理论与实验研究[J]. 太阳能学报. 2022, 43(3): 171-179 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0634
Zhang Zhen, Wang Lei, Qin Zhiguang, Wu Minyan, Xu Chuanjia, Quan Peng. THEORETICAL AND EXPERIMENTAL STUDY ON INFLUENCING FACTORS OF BIFACIAL PHOTOVOLTAIC MODULES FIELD PERFORMANCE[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 171-179 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0634
中图分类号: TM615   

参考文献

[1] JAI P S, ARMIN G A, TIMOTHY M W, et al.Electrical characterization method for bifacial photovoltaic modules[J]. Solar energy materials & solar cells, 2014, 127: 136-142.
[2] ZHANG Z, WU M, LU Y, et al.The mathematical and experimental analysis on the steady-state operating temperature of bifacial photovoltaic modules[J]. Renewable energy, 2020, 155: 658-668.
[3] PENG F G, LONG W, ZHOU C, et al.Terrestrial study of bifacial silicon heterojunction solar modules: the 7th edition of the world conference on photovoltaic energy conversion (WCPEC-7)[C]//The 7th Edition of the World Conference on Photovoltaic Energy Conversion (WCPEC-7), Madrid, Spain, 2018.
[4] BHADURI S, KOTTANTHARAYIL A.Mitigation of soiling by vertical mounting of bifacial modules[J]. IEEE journal of photovoltaics, 2019, 9(1): 240-244.
[5] MOLIN E, STRIDH B, MOLIN A, et al.Experimental yield study of bifacial PV modules in nordic conditions[J]. IEEE journal of photovoltaics, 2018, 8(6): 1457-1463.
[6] YUSUFOGLU U A, LEE T H, PLETZER T M, et al.Simulation of energy production by bifacial modules with revision of ground reflection[J]. Energy procedia, 2014, 55: 389-395.
[7] YUSUFOGLU A, PLETZER T M, KODUVELIKULATHU L J, et al.Analysis of the annual performance of bifacial modules and optimization methods[J]. IEEE journal of photovoltaics, 2015, 5(1): 320-328.
[8] EDLER A, SCHLEMMER M, RANZMEYER J, et al.Flasher setup for bifacial measurements[C]//Presented at the First bifiPV Workshop, Konstanz, Germany, 2012.
[9] IEC TS 60904, Photovoltaic devices-Part 1-2: Measurement of current-voltage characteristics of bifacial PV devices draft[S].
[10] KENNY R P, LOPEZ-GARCIA J, MENENDEZ E G, et al.Characterizing bifacial modules in variable operating conditions[C]//Conference Record of the IEEE Photovoltaic Specialists Conference, Lausanne, Switzerland, 2018, 8547853: 1210-1214.
[11] ISMAIL S, JORIS L, RADOVAN K, et al.Modelling of bifacial gain for stand-alone and in-field installed bifacial PV modules[J]. Energy Procedia, 2016, 92: 600-608.
[12] GROSS U, SPINDLER K, HAHNE E.Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries[J]. Letters in heat & mass transfer, 1981, 8(3): 219-227.
[13] WANG L, LIU F, YU S, et al.The study on micromismatch losses of the bifacial PV modules due to the irradiance nonuniformity on its backside surface[J]. IEEE journal of photovoltaics, 2019, 10(1): 135-143.
[14] ZHU Z W, ZHANG Z, JIANG Y F, et al.Performance analysis on bifacial PV panels with inclined and horizontal east-west sun trackers[J]. IEEE journal of photovoltaics, 2019, 9(3): 636-642.
[15] MODEST M F.Radiative heat transfer[M]. Elsevier Ltd, 1993: 148-149.
[16] GUERRIERO P, CODECASA L, D’ALESSANDRO V, et al. Dynamic electro-thermal modeling of solar cells and modules[J]. Solar energy, 2019, 179(Feb): 326-334.
[17] MINEMOTO T, NAKADA Y, TAKAHASHI H, et al.Uniqueness verification of solar spectrum index of average photon energy for evaluating outdoor performance of photovoltaic modules[J]. Solar energy, 2009, 83(8): 1294-1299.

基金

新能源与储能运行控制国家重点实验室(中国电力科学研究院有限公司)开放基金(NYB51202101990)

PDF(1903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/