以筏式波浪能发电装置为研究对象,研究锁定控制响应时间常数、名义锁定阻尼系数和发电系统俘能阻尼系数对锁定控制的影响。结果表明:响应时间常数会影响装置对波浪能的俘获,响应时间常数越小,装置的平均俘获功率越大;名义锁定阻尼系数与俘能阻尼系数之比越大,锁定控制的效果越好,且有锁定控制与无锁定控制的平均俘获功率之比越大;锁定控制使平均俘获功率取得峰值的最佳俘能阻尼系数减小,在最佳俘能阻尼系数下,再实施锁定控制,装置的平均俘获功率还能进一步提高,且有无锁定控制的平均俘获功率之比随波浪周期的增大先增大后减小。
Abstract
Focusing on the raft-type wave power generation device, the influence of response time constant, nominal latching damping coefficient, power capture damping of power generation system on the efficiency of latching control is investigated. The results show that the time constant has an effect on the latching control, and the smaller the constant time, the larger the power captured by the device. As the ratio of nominal latching damping to power capture damping increases, the latching control approaches the absolute latching control, and the ratio of power captured by the device with latching control to that without latching control increases. The optimal power capture damping corresponding to the peak captured power decreases due to the latching control, and the power capture ability of the device with optimal power capture damping can be further improved by latching control. Besides the ratio of power captured by the device with latching control to that without latching control increases and then decreases as wave period increases.
关键词
波浪能 /
发电 /
最大值原理 /
筏式 /
锁定控制 /
响应时间常数
Key words
wave energy /
power generation /
maximum principle /
raft-type /
latching control /
response time constant
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 叶寅, 游亚戈, 王振鹏, 等. 波浪能装置液压自动分级控制系统研究[J]. 太阳能学报, 2019, 40(6): 1481-1486.
YE Y, YOU Y G, WANG Z P, et al.Automic classification control system of wave energy device research[J]. Acta energiae solaris sinaca, 2019, 40(6): 1481-1486.
[2] BUDAL K, FALNES J.Optimum operation of improved wave-power converter[J]. Marine science communications, 1977, 3: 133-150.
[3] 吴金明. 鸭式波浪能转换单元的锁定控制与阵列布局设计的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
WU J M.Research on latching control of the solo duck wave energy converter and its array layout design[D]. Harbin: Harbin Institute of Technology, 2018.
[4] BABARIT A, CLEMENT A H.Optimal latching control of a wave energy device in regular and irregular waves[J]. Applied ocean research, 2006, 28(2): 77-91.
[5] DE O FALCAO A F. Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system[J]. Ocean engineering, 2008, 35(3-4): 358-366.
[6] 刘鲲. 浮子式波能转换装置及其深海平台减振一体化系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
LIU K.Performance research of the floating buoy wave energy converters and their integrated system for motion suppression of deep-water platforms[D]. Harbin: Harbin Institute of Technology,2016.
[7] SHENG W, ALCORN R, LEWIS A.On improving wave energy conversion,part I: Optimal and control technologies[J]. Renewable energy, 2015, 75: 922-934.
[8] LIU C H, YANG Q J, BAO G.Latching control using optimal control method for a raft-type wave energy converter[J]. Ships and offshore structures, 2018, 13(4): 1-17.
[9] FALNES J.Ocean waves and oscillating systems: linear interactions including wave energy extraction[M]. Cambridge: Cambridge University Press, 2002: 196-222.
[10] LIU C H, YANG Q J, BAO G.Performance investigation of a two-raft-type wave energy converter with hydraulic power take-off unit[J]. Applied ocean research, 2017, 62: 139-155.
[11] 张洪钺, 王青. 最优控制理论与应用[M]. 北京: 高等教育出版社, 2006: 56-88.
ZHANG H Y, WANG Q.Optimal control theory and application[M]. Beijing: High Education Publishing Press, 2006: 56-88.
[12] ZHENG S M, ZHANG Y H, ZHANG Y L, et al.Numerical study on the dynamics of a two-raft wave energy conversion device[J]. Journal of fluids and structures, 2015, 58: 271-290.
基金
国家自然科学基金(51905139); 中央高校基本科研业务费(JZ2020HGQA0195; JZ2019HGTA0045); 流体动力与机电系统国家重点实验室开发基金(GZKF-201812)