欢迎访问《太阳能学报》官方网站,今天是 分享到:
ISSN 0254-0096 CN 11-2082/K

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3): 158-162.DOI: 10.19912/j.0254-0096.tynxb.2020-0669

• • 上一篇    下一篇

发射极掺杂工艺对产业化IBC太阳电池性能的影响

张治1, 邹鹏辉1, 刘志锋2, 赵影文2, 包杰2   

  1. 1.国家电投集团青海光伏产业创新中心有限公司,西宁 810000;
    2.泰州中来光电科技有限公司,泰州 225500
  • 收稿日期:2020-07-15 发布日期:2022-09-28
  • 通讯作者: 张 治(1978—),男,博士、高级工程师,主要从事太阳能光伏技术、模式识别与智能系统、自动控制等方面的研究。58535280@qq.com
  • 基金资助:
    江苏省重点研发计划(BE2017136)

INFLUENCE OF EMITTER DOPING PROCESS ON PERFORMANCE OF INDUSTRIAL IBC SOLAR CELL

Zhang Zhi1, Zou Penghui1, Liu Zhifeng2, Zhao Yingwen2, Bao Jie2   

  1. 1. SPIC Qinghai Photovoltaic Industry Innovation Center Co., Ltd., Xining 810000, China;
    2. Jolywood (Taizhou) Solar Technology Co., Ltd., Taizhou 225500, China
  • Received:2020-07-15 Published:2022-09-28

摘要: 主要对n型IBC太阳电池结构的发射极硼掺杂工艺进行优化设计,并通过ENDA2模拟软件对实验结果进行验证分析,通过复合损失分析,研究不同发射极硼扩工艺对产业化IBC太阳电池电性能的影响。实验结果表明,采用较高推进温度的硼扩散工艺,获得发射极方阻98 Ω/sq,该发射极具有最低的表面浓度1.68×1019 cm-3和最深结深0.88 μm,使得电池具有最低的复合损失(J0,pass=24 fA/cm2)。在25 ℃下,AM 1.5的标准I-V测试条件下,采用最优硼扩散条件制作的IBC太阳电池,其最高电池转化效率为23.4%(Voc=688.4 mV,Jsc=41.99 mA/cm2,FF=80.9%)。进一步地,通过数值模拟的方法对该电池各部分功率损失进行分析,可为下一步电池效率的提升提供优化方向。

关键词: 太阳电池, 热扩散, 数值模拟, IBC, 转换效率, 产业化

Abstract: In this paper, the emitter boron doping process is optimized for n-type IBC silicon wafer solar cell, and the experimental results are verified and analyzed by ENDA2 simulation software. The influence of different emitter boron diffusion processes on the performance of industrial IBC solar cell is investigated by the recombination loss analysis. The results show that the sheet resistance of 98 Ω/sq can be realized with higher drive-in temperature during boron diffusion process, which exhibits the lowest surface concentration of 1.68×1019 cm-3 and the deepest p-n junction depth of 0.88 μm, and results in the lowest recombination loss (J0,pass=24 fA/cm2) of the solar cells. Under 25 ℃, the AM 1.5 standard test conditions, the maximum efficiency of 23.4%(Voc=688.4 mV, Jsc=41.99 mA/cm2, FF=80.9%) is achieved for IBC solar cell with optimized boron diffusion process. Further, the power loss of each component of the champion cell is analyzed by numerical simulation, paving a new way for efficiency optimization in terms of the industrial IBC solar cell.

Key words: solar cells, thermal diffusion, numerical simulation, IBC, conversion efficiency, industrialization

中图分类号: