基于逆高斯过程,考虑到初始退化具有随机特征,建立光伏组件的性能退化模型,并对其可靠性进行评估。失效机理分析表明,光伏组件的退化过程主要表现为输出功率的衰减,其衰减具有单调、随机特征,且初始退化也具有随机特征,据此建立光伏组件带有时移的逆高斯性能退化模型;基于极大似然估计方法,给出模型参数及可靠度函数的估计;基于所建模型,对光伏组件退化实例进行分析,通过与传统逆高斯退化模型进行比较,表明所建模型能更为准确地描述光伏组件的退化规律,所得可靠度估计结果更为符合实际。
Abstract
Based on the inverse Gaussian process, considering the random characteristics of the initial degradation, the performance degradation model of PV modules are established and its reliability is evaluated. First of all, the failure mechanism analysis shows that the degradation process of photovoltaic modules is mainly manifested as the attenuation of output power, which has monotonous and random characteristics, and the initial degradation also has random characteristics, so as to establish the inverse Gaussian performance degradation model with time shift of photovoltaic modules. Then, based on the maximum likelihood estimation method, the model parameters and reliability functions are estimated. Finally, based on the model, an example of photovoltaic module degradation is analyzed, and compared with the traditional inverse Gaussian degradation model, the results show that the model can describe the degradation law of photovoltaic modules more accurately, and the reliability estimation results are more in line with the reality.
关键词
可靠性 /
光伏组件 /
退化 /
逆高斯过程 /
随机初始退化
Key words
reliability /
photovoltaic module /
degradation /
inverse Gaussian process /
random initial degradation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 北极星太阳能光伏网讯[EB10L]. https://guangfu.bjx.com.cn/news/20191114/1020689.shtml.
[2] 余荣斌. 基于性能退化的光伏组件服役可靠性评估方法研究[D]. 广州: 华南理工大学, 2016.
YU R B.Photovoltaic modules service reliability evaluation based on performance degradation[D]. Guangzhou: South China University of Technology, 2016.
[3] 北极星太阳能光伏网讯[EB10L]. https://guangfu.bjx.com.cn/news/20141218/574320.shtml.
[4] 孙权, 冯静, 潘正强. 基于性能退化的长寿命产品寿命预测技术[M]. 北京: 科学出版社, 2015.
SUN Q, FENG J, PAN Z Q.Long life prediction technology based on performance degradation[M]. Beijing: Science Press, 2015.
[5] LIU W D, JIANG X H, LI S S, et al.Photovoltaic module regional clustering in mainland China and application based on factors influencing field reliability[J]. Renewable and sustainable energy reviews, 2020, 133: 110339.
[6] NDIAYE A, CHARKI A, KOBI A, et al.Degradations of silicon photovoltaic modules: A literature review[J]. Solar energy, 2013, 96: 140-151.
[7] CHARKI A, LARONDE R, BIGAUD D.Accelerated degradation testing of a photovoltaic module[J]. Journal of photonics for energy, 2013, 3(1): 1-10.
[8] 余荣斌, 刘桂雄, 徐欢. 基于β分布统示法的光伏组件性能退化可靠度估算[J]. 仪器仪表学报, 2015, 36(11): 2586-2593.
YU R B, LIU G X, XU H.β-distribution uniform expression based photovoltaic modules reliability evaluation with degradation data distribution[J]. Chinese journal of scientific instrument, 2015, 36(11): 2586-2593.
[9] 刘桂雄, 余荣斌, 徐欢. 加速退化下光伏组件伪失效寿命分布估算[J]. 光学精密工程, 2016, 24(9): 2183-2191.
LIU G X, YU R B, XU H.Estimation of pseudo-failure lifetime distribution for photovoltaic modules based on accelerated degradation[J]. Optics and precision engineering, 2016, 24(9): 2183-2191.
[10] PARK S H, KIM J H.Application of gamma process model to estimate the lifetime of photovoltaic modules[J]. Solar energy, 2017, 147: 390-398.
[11] KAHOUL N, CHENNI R, CHEGHIB H, et al.Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment[J]. Renewable energy, 2017, 109: 66-72.
[12] GONZÁLEZ J R, VÁZQUEZ M, ALGORA C, et al. Real-time reliability test for a CPV module based on a power degradation model[J]. Progress in photovoltaics research & applications, 2011, 19(1): 113-122.
[13] XIAO X, YE Z S.Optimal design for destructive degradation tests with random initial degradation values using the Wiener process[J]. IEEE transactions on reliability, 2016, 65(3): 1327-1342.
[14] 李军星, 王治华, 刘成瑞, 等. 随机效应Wiener过程退化可靠性分析方法[J]. 系统工程理论与实践, 2018, 38(9): 2434-2440.
LI J X, WANG Z H, LIU C R, et al.Reliability analysis based on random-effect Wiener process degradation model[J]. System engineering theory and practice, 2018, 38(9): 2434-2440.
[15] 格林M A. 太阳能电池工作原理、技术和系统应用[M]. 上海: 上海交通大学出版社, 2010.
GREEN M A.Solar cell working principle, technology and system application[M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
[16] FOUAD M M, SHIHAT A, LAMIA A, et al.An integrated review of factors influencing the performance of photovoltaic panels[J]. Renewable & sustainable energy reviews, 2017, 80: 1499-1511.
[17] SANTHAKUMARI M, SAGAR N.A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: failure detection methods and essential mitigation techniques[J]. Renewable and sustainable energy reviews, 2019, 110: 83-100.
[18] MUNOZ M A, ALONSO-GARCIA M C, Vela N, et al. Early degradation of silicon PV modules and guaranty conditions[J]. Solar energy, 2011, 85(9): 2264-2274.
[19] YE Z S, XIE M.Stochastic modelling and analysis of degradation for highly reliable products[J]. Applied stochastic models in business and industry, 2015, 31(1): 16-32.
[20] MISHRA S, VANLI O A.Remaining useful life estimation with lamb-wave sensors based on wiener process and principal components regression[J]. Journal of nondestructive evaluation, 2016, 35(1): 1-13.
[21] PAN Z, BALAKRISHNAN N.Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes[J]. Reliability engineering & system safety, 2011, 96(8): 949-957.
[22] 寇海霞, 安宗文, 马强. 基于性能退化数据的风力机叶片疲劳可靠性评估[J]. 太阳能学报, 2017, 38(11): 3174-3179.
KOU H X, AN Z W, MA Q.Fatigue reliability assessment of wind turbine blades based on the performance degradation date[J]. Acta energiae solaris sinica, 2017, 38(11): 3174-3179.
[23] YE Z S, CHEN N.The inverse Gaussian process as a degradation model[J]. Technometrics, 2014, 56(3): 302-311.
[24] WANG X, XU D H.An inverse Gaussian process model for degradation data[J]. Technometrics, 2010, 52(2): 188-197.
基金
国家自然科学基金(72071099; 71861011); 江西省博士后科研择优资助项目(2019KY35)