制备大小2种尺寸Au负载的TiO2样品(分别记为LAuP25和SAuP25)用于太阳能光热化学循环分解水。全光谱下LAuP25和SAuP25的氢气产量分别为9.90和12.60 μmol/g,可见光下产量分别为3.91和1.15 μmol/g。通过透射电子显微镜(TEM)、X射线能量色散谱(EDS)和X射线衍射技术(XRD)分析样品物质组成与形貌晶格。利用X射线光电子能谱分析(XPS)、紫外可见吸收光谱分析(UV-vis)、固体光致发光光谱(PL)分析样品光学性能与表面价态。运用密度泛函理论计算样品表面氧空位形成能。结合光热化学循环与局域表面等离子共振(LSPR)机理,探究不同尺寸Au纳米颗粒对太阳能光热化学循环分解水的影响。
Abstract
Au-loaded P25 samples were prepared for water splitting through photo-thermochemical cycle. LAuP25 and SAuP25 yield 9.90 and 12.60 μmol/g H2 full-spectrum under full spectrum illumination respectively, or 3.91 and 1.15 μmol/g H2 under λ>400 nm illumination. The sample material composition and morphology lattice were analyzed by transmission electron microscope (TEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction technique (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible absorption spectroscopy (UV-vis), and solid photoluminescence spectroscopy (PL) were used to analyze the optical properties and surface valence of the samples. The density functional theory was used to calculate the oxygen vacancy formation energy on the sample surface. Combining the photothermal chemical cycle and the mechanism of localized surface plasmon resonance (LSPR), the effect of Au nanoparticles of different sizes on the photothermal chemical cycle of water decomposition was explored.
关键词
水分解 /
制氢 /
光热协同 /
太阳能光热化学循环 /
LSPR /
二氧化钛
Key words
water splitting /
hydrogen production /
photo-thermal /
photo-thermochemical cycle /
LSPR /
TiO2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢英鹏, 王国胜, 张恩磊, 等. 半导体光解水制氢研究:现状、挑战及展望[J]. 无机化学学报, 2017, 33(2): 177-209.
XIE Y P, WANG G S, ZHANG E L, et al.Photocatalytic hydrogen evolution from water splitting using semiconductors: Advance, challenge and prospects[J]. Chinese journal of inorganic chemistry, 2017, 33(2): 177-209.
[2] JIA J, O’BRIEN P G, HE L, et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5[J]. Advanced science, 2016, 3(10): 1600189.
[3] LIU H M, LI M, DAO T D, et al.Design of Pd-Au alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation[J]. Nano energy, 2016, 26: 398-404.
[4] ZHANG Y W, XU C Y, CHEN J C, et al.A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy[J]. Applied energy, 2015, 156: 223-229.
[5] ZHANG Y W, CHEN J C, XU C Y, et al.A novel photo-thermochemical cycle of water-splitting for hydrogen production based on TiO2-x/TiO2[J]. International journal of hydrogen energy, 2016,41(4): 2215-2221.
[6] DOCAO S, KOIRALA A R, KIM M G, et al.Solar photochemical-thermal water splitting at 140 ℃ with Cu-loaded TiO2[J]. Energy & environmental science, 2017, 10(2): 628-640.
[7] WANG B, WANG X H, LU L, et al.Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst[J]. ACS catalysis, 2018, 8(1): 516-525.
[8] ZHAN C, CHEN X J, YI J, et al.From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions[J]. Nature reviews chemistry, 2018, 2(9): 216-230.
[9] GOMES S C, JUAREZ R, MARINO T, et al.Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water[J]. Journal of the American Chemical Society, 2011, 133(3): 595-602.
[10] QIAN K, SWEENY B C, JOHNSTON-PECK A C, et al. Surface plasmon-driven water reduction:Gold nanoparticle size matters[J]. Journal of the American Chemical Society, 2014, 136(28): 9842-9845.
基金
国家自然科学基金(51976190); 浙江省自然科学基金(LR18E060001); 与中央高校基本科研业务费专项资金(2019FZA4013)