针对风电机组最大功率跟踪(MPPT)及其控制过程稳定性需求,该文提出一种二阶滑膜-PID(PSOSMC)最大功率跟踪控制策略。为了实现对发电机转矩的稳定控制,通过结合二阶滑膜控制策略与PID控制,由比例积分导数(PID)构建滑模面进而推导出转矩控制律,建立基于PID滑模面的二阶滑膜控制系统模型,并利用Lyapunov稳定性定理证明了控制系统的收敛性。该文从气动效率、发电效率、发电机转矩和低速轴转矩等方面对二阶滑膜-PID策略的有效性进行了评估。研究结果表明,相较于其他控制策略,该文提出的PSOSMC策略能有效提高风电机组的发电效率,并显著降低发电机与低速轴转矩的波动,使风电机组在获得最大功率输出的同时还兼顾有良好的运行稳定性。
Abstract
Maximum power point tracking and its control procedure steadiness qualification of wind turbines are satisfied by the PSOSMC strategy, which is proposed in this work. In order to achieve the stable control of generator torque, the PSOSMC system model is established based on the PID hyperplane, and the stability of the control system is proved by the Lyapunov principles simultaneously. In this work, the PSOSMC strategy is carried out from the aspects of aerodynamic efficiency, power generation efficiency, generator torque and low-speed shaft torque. The results show that the PSOSMC proposed can improve the power generation efficiency of wind turbines compared with other control strategies. Besides, the fluctuation of torque of the generator and the low-speed shaft reduce significantly. It juggles maximum power conversion and pleasurable operational steadiness of wind turbines.
关键词
风电机组 /
最大功率跟踪 /
滑模控制 /
系统稳定性
Key words
wind turbines /
maximum power point trackers /
sliding mode control /
system stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BARAMBONES O.Robust wind speed estimation and control of variable speed wind turbines[J]. Asian journal of control, 2019, 21(2): 856-867.
[2] HUANG C, LI F X, JIN Z Q.Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics[J]. IEEE transactions on industrial electronics, 2015, 62(4): 2530-2539.
[3] SARAVANAKUMAR R, JENA D.Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine[J]. International journal of electrical power & energy systems, 2015, 69: 421-429.
[4] CHEN Z Y, YIN M H, ZHOU L J, et al.Variable parameter nonlinear control for maximum power point tracking considering mitigation of drive-train load[J]. IEEE/CAA journal of automatica sinica, 2017, 4(2): 95-102.
[5] YIN M H, YANG Z Q, XU Y, et al.Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency[J]. IEEE transactions on industrial electronics, 2015, 62(4): 2530-2539.
[6] CHAN C M, BAI H L, HE D Q.Blade shape optimization of the savonius wind turbine using a genetic algorithm[J]. Applied energy, 2018, 213: 148-157.
[7] FAN Z X, ZHU C C.The optimization and the application for the wind turbine power-wind speed curve[J]. Renewable energy, 2019, 140: 52-61.
[8] GAO X X, YANG H X, LU L.Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied energy, 2016, 174: 192-200.
[9] YANG J, LI S H, SU J Y, et al.Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[J]. Automatica, 2013, 49(7): 2287-2291.
[10] THONGAM J S, OUHROUCHE M.MPPT control methods in wind energy conversion systems[J]. Fundamental and advanced topics in wind power, 2011(1): 339-360.
[11] PUCCI M, CIRRINCIONE M.Neural MPPT control of wind generators with induction machines without speed sensors[J]. IEEE transactions on industrial electronics, 2010, 58(1): 37-47.
[12] 周连俊, 殷明慧, 周前, 等. 适应湍流风况变化的风能捕获量-载荷多目标优化最大功率点跟踪控制[J]. 电网技术, 2017, 41(1): 64-71.
ZHOU L J, YIN M H, ZHOU Q, et al.Improved MPPT control of wind turbines based on multi-objective optimization of wind energy capture and stress with consideration of variable turbulence conditions[J]. Power system technology, 2017, 41(1): 64-71.
[13] MERIDA J, AGUILAR L T, DAVILA J, et al.Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization[J]. Renewable energy, 2014, 71: 715-728.
[14] EVANGELISTA C, PULESTON P, VALENCIAGA F.Wind turbine efficiency optimization. comparative study of controllers based on second order sliding modes[J]. International journal of hydrogen energy, 2010, 35(11): 5934-5939.
[15] SUN H C, HAN Y Z, ZHANG L Y.Maximum wind power tracking of doubly fed wind turbine system based on adaptive gain second-order sliding mode[J]. Journal of control science and engineering, 2018, 2018: 1-11.
[16] EVANGELISTA C, PULESTON P, VALENCIAGA F, et al.Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[J]. IEEE transactions on industrial electronics, 2013, 60(2): 538-545.
[17] BELTRAN B, AHMED-ALI T, BENBOUZID M E H. Sliding mode power control of variable-speed wind energy conversion systems[J]. IEEE transactions on energy conversion, 2008, 23(2): 551-558.
[18] HENRIKSEN L C.Model predictive control of a wind turbine (master thesis)[D]. Copenhagen: Technical University of Denmark, 2007.
[19] KUMAR D, CHATTERJEE K.A review of conventional and advanced MPPT algorithms for wind energy systems[J]. Renewable and sustainable energy reviews, 2016, 55: 957-970.
[20] BURTON T.Wind energy handbook[M]. 2nd Ed. Oxford: John Wiley & Sons, Ltd., 2011.
[21] AZIZI A, NOURISOLA H, SHOJAMAJIDABAD S, et al.Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller[J]. Renewable energy, 2019, 135: 55-65
[22] BELTRAN B, AHMED-ALI T, BENBOUZID M E H. High-order sliding-mode control of variable-speed wind turbines[J]. IEEE transactions on industrial electronics, 2009, 56(9): 3314-3321.
[23] BOUKHEZZAR B, SIGUERDIDJANE H.Nonlinear control of a variable-speed wind turbine using a two-mass model[J]. IEEE transactions on energy conversion, 2011, 26(1): 149-162
[24] THOMSEN S C.Nonlinear control of a wind turbine[D]. Copenhagen: Technical University of Denmark Denmark, 2006.
[25] MARQUEZ H J.Nonlinear control systems-Analysis and design[J]. IEEE transactions on automatic control, 2004, 49: 1225-1226.
[26] JIAO X, YANG Q, FAN B, et al.EWSE and uncertainty and disturbance estimator based pitch angle control for wind turbine systems operating in above-rated wind speed region[J]. Journal of dynamic systems, measurement, and control, 2020, 142(3): 031006.
[27] VIHRIALA H, PERALA R, MAKILA P, et al.PG3. 25 A gearless wind power drive performance part 2: control system[C]//2001 Earopean Wind Energy Conference and Exhibition(EWEC′01), Copenhagen, Denmark, 2001: 1090-1093.
[28] BOUKHEZZAR B, SIGUERDIDJANE H.Nonlinear control of variable speed wind turbines without wind speed measurement[C]//Proceedings of the 44th IEEE Conference on Decision and control, IEEE, Seviua, Spain, 2005: 3456-3461.
[29] MÉRIDA J, AGUILAR L T, DÁVILA J. Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization[J]. Renewable energy, 2014, 71:715-728.
[30] JONKMAN B J.TurbSim user’s guide: version 1.50[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2009.
基金
国家重点研发计划(2018YFB1501300); 重庆市技术创新与应用发展专项(cstc2019jscx-mbdxX0003); 中央高校基本科研业务费(NO.2020CDJQY-A070)