为探究安装高程对潮流能水轮机尾迹特性的影响,以模型潮流能水轮机为研究对象,采用ADV采集尾流场速度数据,对比分析不同高程下的尾流场特性,揭示安装高程对潮流能水轮机尾迹特性的影响规律。结果表明:随着安装高程的增加,转轮后方尾流速恢复速度逐渐加快,而湍流强度和雷诺切应力恢复速度有逐渐减小的趋势;横向尾流场水动力特性沿转轮中心线基本呈对称分布,纵向剖面中,尾流速度呈现明显向自由液面漂移的现象,而湍流强度和雷诺切应力未出现明显的漂移现象;安装高程主要影响下游的尾迹恢复速率,而对沿水深和水平面方向的尾迹影响较小,支撑结构仅对近尾流1.5D(D为转轮直径)范围内尾迹结构影响较大,而对远尾迹特性影响较小。
Abstract
In order to research the different wake characteristics of tidal turbine at different setting elevations, the velocity was measured by Acoustic Doppler Velocimeter (ADV) and the different wake characteristics were compared, the general wake distribution regulation were revealed at different working conditions. The results indicate that the recovery rate of velocity deficit is gradually increase, however the recovery rate of turbulence intensity and Reynolds shear stress gradually decrease as the growth of the turbine setting elevation. The different wake characteristics are nearly symmetrical along the center line of the runner at the transverse flow field, the wake velocity drift to the free surface at the longitudinal profile, while the turbulence intensity and Reynolds shear stress do not perform distinct same behavior. The different turbine setting elevations mainly affect the wake recovery rate at the downstream, however perform little influence on the wake characteristics along the depth and horizon. The support structure only perform a postive effect on the wake characteristics within 1.5D at the near wake, while perform a negative effect at the far wake.
关键词
安装高程 /
潮流能 /
尾迹特性 /
雷诺切应力 /
模型试验
Key words
turbines setting elevation /
tidal power /
wake characteristics /
Reynolds shear stress /
model experiment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEWIS M, NEILL S P, ROBINS P E, et al. Resource assessment for future generations of tidal-stream energy arrays[J]. Energy, 2015, 83: 403-415.
[2] 袁鹏, 陈超, 王树杰, 等. 潮流能水平轴水轮机翼型几何参数对其转捩特性的影响研究[J]. 太阳能学报, 2020, 41(6):156-163.
YUAN P, CHEN C, WANG S J, et al. Study on influence of geometric parameters on transition characteristics of tidal turbine hydrofoil[J]. Acta energiae solaris sinica, 2020, 41(6): 156-163.
[3] 张亮, 尚景宏, 张之阳, 等. 潮流能研究现状2015-水动力学[J]. 水力发电学, 2016, 35(2): 1-15.
ZHANG L, SHANG J H, ZHANG Z Y, et al. Tidal current energy update 2015-Hydrodynamics[J]. Journal of hydroelectric engineering, 2016, 35(2): 1-15.
[4] 郑源, 李东阔, 张玉全, 等. 单桩结构的潮流能水轮机尾流流场分析[J]. 太阳能学报, 2019, 40(11): 3031-3038.
ZHENG Y, LI D K, ZHANG Y Q, et al. Study on wake effect of horizontal axis marine current[J]. Acta energiae solaris sinica, 2019, 40(11): 3031-3038.
[5] 陈娅玲.潮流水轮机及阵列对周边流场影响研究[D]. 北京: 清华大学, 2015.
CHEN Y L.Study on the effects of tidal turbine and array on the flow field[D]. Beijing: Tsinghua University, 2015.
[6] CHEN Y L, LIN B L, LIN J, et al. Experimental study of wake structure behind a horizontal axis tidal stream turbine[J]. Applied energy, 2017, 196: 82-96.
[7] MYERS L E, BAHAJ A S Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean engineering, 2010, 37(2-3): 218-227.
[8] MYCEK P, GAURIER B, GERMAIN G, et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour.Part I: one single turbine[J]. Renewable energy, 2014, 66: 729-746.
[9] MYCEK P, GAURIER B, GERMAIN G, et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour.Part II: two interacting turbines[J]. Renewable energy, 2014, 68: 876-892.
[10] MYERS L E, BAHAJ A S, RAWLINSON-SMITH R I, et al. The effect of boundary proximity upon the wake structure of horizontal axis marine current turbines[C]//ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, 2008: 709-719.
[11] 张继生, 张婧, 王日升, 等. 波流共同作用下水平轴潮流能水轮机水动力特性[J]. 河海大学学报(自然科学版), 2019, 47(2): 175-182.
ZHANG J S, ZHANG J, WANG R S, et al. Investigation on the hydrodynamics around a tidal stream turbine of horizontal axis under the combined action of wave and current[J]. Journal of Hohai University(natural sciences), 2019, 47(2): 175-182.
[12] ZANG W, ZHENG Y, ZHANG Y Q, et al. Experiments on the mean and integral characteristics of tidal turbine wake in the linear waves propagating with the current[J]. Ocean engineering, 2019, 173: 1-11.
[13] WANG S Q, CUI J, YE R C, et al. Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion[J]. Renewable energy, 2019, 135:313-325.
[14] WANG S Q, SUN K, XU G, et al. Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions[J]. Renewable energy, 2017, 102: 87-97.
[15] WANG S Q, XU G, ZHU R Q, et al. Hydrodynamic analysis of vertical-axis tidal current turbine with surging and yawing coupled motions[J]. Ocean engineering, 2018, 155: 42-54.
[16] CHEN Y L, LIN B L, LIN J J C, et al. Modelling tidal current energy extraction in large area using a three-dimensional estuary model[J]. Computers & geosciences, 2014, 72: 76-83.
[17] CHEN Y L, LIN B L, SUN J, et al. Hydrodynamic effects of the ratio of rotor diameter to water depth: an experimental study[J]. Renewable energy, 2019, 136(6): 331-341.
[18] 张玉全, 赵梦晌, 郑源, 等. 不同湍流强度下潮流能水轮机尾流特性试验研究[J]. 中国电机工程学报, 2020, 40(15): 4902-4909.
ZHANG Y Q, ZHAO M S, ZHENG Y, et al. Experimental study of different turbulence intensities on the wake characteristics of tidal turbines[J]. Proceedings of the CSEE, 2020, 40(15): 4902-4909.
[19] 张德胜, 陈健, 石磊, 等. 雷诺数修正的潮流能水轮机水动力特性算法完善[J]. 太阳能学报, 2018, 39(5): 1195-1202.
ZHANG D S, CHEN J, SHI L, et al. Hydrodynamic performance prediction of tidal current turbine based on correction of local reynolds number[J]. Acta energiae solaris sinica, 2018, 39(5): 1195-1202.
基金
国家自然科学基金(51809083); 国家自然基金(51709086); 江苏省自然科学基金(BK20180504)