风雨作用下风力机流场及气动性能分析

周文平, 唐学鑫

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 318-323.

PDF(2314 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2314 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 318-323. DOI: 10.19912/j.0254-0096.tynxb.2020-0712
电化学储能安全性与退役动力电池梯次利用关键技术专题

风雨作用下风力机流场及气动性能分析

  • 周文平1, 唐学鑫2
作者信息 +

FLOW FIELDS AND AERODYNAMIC PERFORMANCE ANALYSIS OF WIND TURBINE UNDER WIND AND RAIN INTERACTION

  • Zhou Wenping1, Tang Xuexin2
Author information +
文章历史 +

摘要

风雨作用下雨滴会改变风力机流场及叶片气动力,影响风力机的安全和稳定运行。以某1.5 MW风力机为研究对象,基于多参考坐标系法和欧拉两相流法,得到风雨作用下风力机流场和雨滴收集率分布;在此基础上,结合欧拉壁面液膜模型对雨滴在叶片表面的累积过程进行计算,分析叶片气动性能。计算表明:风雨作用下叶片表面雨滴收集率沿展向逐渐增大;雨滴首先在压力面上形成雨膜,并逐步扩展到吸力面中部和叶尖区域,而叶根附近较难形成雨膜;雨滴引起的叶片表面压力的改变主要在压力面上,压力增加值与风压比值最高可达12.5%。计算结果能够为风力机的抗风雨设计及风雨条件下风力机的安全运行提供参考。

Abstract

Raindrops under interaction of wind and rain will change the flow field of air and aerodynamic load of blade, and affect the safety and stability of wind turbine. A 1.5 MW wind turbine is taken as an example, the flow field and raindrop collection efficiency under the interaction of wind and rain are computed based on the Multiple Reference Frame (MRF) and Eulerian Two-Phase theory; and then the accumulation process of raindrops on the surface of blade and the aerodynamic performance of blade are obtained based on Euler wall film model. The results show that the raindrop collection efficiency on the blade surface increases along the blade span under the interaction of wind and rain; raindrops form film on the pressure side firstly, and then expand to the middle area of suction side and the tip area, but it is difficulty to form film near the root area of blade. The change of the surface pressure on blade caused by raindrops is mainly on pressure side, and the ratio of the wind pressure increase value to the wind pressure reaches up to 12.5%. The derived results are helpful to develop more reliable design for wind and rain resistance of the wind turbine, and the safe operation of the wind turbine under wind and rain interaction conditions.

关键词

风力机 / 风雨作用 / 雨膜 / 流场 / 气动性能

Key words

wind turbines / wind rain interaction / rain film / flow fields / aerodynamical performance

引用本文

导出引用
周文平, 唐学鑫. 风雨作用下风力机流场及气动性能分析[J]. 太阳能学报. 2022, 43(4): 318-323 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0712
Zhou Wenping, Tang Xuexin. FLOW FIELDS AND AERODYNAMIC PERFORMANCE ANALYSIS OF WIND TURBINE UNDER WIND AND RAIN INTERACTION[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 318-323 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0712
中图分类号: TK83   

参考文献

[1] WANG Z Y, ZHAO Y, LI F Q, et al. Extreme dynamic responses of MW-level wind turbine tower in the strong typhoon considering wind-rain loads[J]. Mathematical problems in engineering, 2013(3): 1-13.
[2] 周超, 李力, 刘衍平.分裂输电导线风雨致振机理及分析模型[J]. 噪声与振动控制, 2017, 37(1): 49-52.
ZHOU C, LI L, LIU Y P.Mechanism and analysis model of wind and rain induced vibration of split transmission conductor[J]. Noise and vibration control, 2017, 37(1): 49-52.
[3] 董国朝, 张建仁, 薛繁荣, 等. 基于拉格朗日体系的典型桥梁断面风-雨耦合作用数值模拟[J]. 湖南大学学报(自然科学版), 2017, 44(9): 26-32.
DONG G C, ZHANG J R, XUE F R, et al. Numerical simulation of wind-rain coupling effect on typical bridge section based on lagrangian system[J]. Journal of Hunan university (engineering science),2017, 44(9): 26-32.
[4] 于淼.低矮建筑风雨作用效应的数值与实测研究[D]. 杭州: 浙江大学, 2013.
YU M.Numerical and experimental study on wind and rain effect of low-rise buildings[D]. Hangzhou: Zhejiang University, 2013.
[5] 余文林, 柯世堂.超大型冷却塔风-雨双向耦合作用机理和气动力分布研究[J]. 振动与冲击, 2019, 38(3): 131-140.
YU W L, KE S T.Wind-rain bidirectional coupled action mechanism and aerodynamic force distribution of super large cooling towers[J]. Journal of vibration and shock, 2019, 38(3): 131-140.
[6] 柯世堂, 余文林, 徐璐, 等. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.
KE S T, YU W L, XU L, et al. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of Zhejiang University (engineering science), 2019, 53(10): 1936-1945.
[7] 杨青, 柯世堂, 余文林, 等. 最不利停机状态下兆瓦级风力机风驱雨分布特性研究[J]. 太阳能学报, 2020, 41(6): 32-40.
YANG Q, KE S T, YU W L, et al. Study of wind driven rain distribution characteristics for MW level wind turbine under adverse stopped status[J]. Acta energiae solaris sinica, 2020, 41(6): 32-40.
[8] 董辉, 高乾丰, 邓宗伟, 等. 大型风力机风雨荷载特性数值研究[J]. 振动与冲击, 2015, 34(15): 17-22.
DONG H, GAO Q F, DENG Z W, et al. Numerical simulations for wind and rain loads of large-scale wind turbines[J]. Journal of vibration and shock, 2015, 34(15): 17-22.
[9] 舒立春, 梁健, 胡琴, 等. 旋转风力机的水滴撞击特性与雾凇模拟[J]. 电工技术学报, 2018, 33(4): 800-807.
SHU L C, LIANG J, HU Q, et al. Droplet impingement characteristics and rime ice accretion of rotating wind turbine[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 800-807.
[10] 吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9): 1263-1267.
WU M L, CHANG S N, LENG M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1263-1267.
[11] 卜雪琴, 林贵平.基于CFD的水收集系数及防冰表面温度预测[J]. 北京航空航天大学学报, 2007, 33(10): 1182-1185.
BU X Q, LIN G P.Predictions of collection efficiency and anti-icing surface temperature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1182-1185.
[12] ENAS A K, ODAY I A, LAITH A S.Steady-state and vibration analysis of a WindPACT 1.5-MW turbine blade[J]. FME transactions, 2019, 47(1): 195-200.
[13] RINKER J, DYKES K.WindPACT Reference Wind Turbines[R]. Golden, CO: National Renewable Energy Laboratory, NREL/TP-5000-67667, 2018.
[14] 易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算[J]. 空气动力学学报, 2013, 31(6): 745-751.
YI X, WANG K C, MA H L, et al. v 3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing[J]. Acta aerodynamica sinica, 2013, 31(6): 745-751.
[15] WANG L, QUANT R, KOLIOS A.Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA[J]. Journal of wind engineering and industrial aerodynamics, 2016, 158: 11-25.
[16] FOOTE G B, DU TOIT P S.Terminal velocity of raindrops aloft[J]. Journal of applied meteorology, 1969, 4: 249-253.
[17] SOMERS D M.The S825 and S826 airfoils[M]. Pennsylvania: National Renewable Energy Laboratory, 2005.
[18] JOHANSEN J, SØRENSEN N N.Aerofoil characteristics from 3D CFD rotor computations[J]. Wind energy, 2004(7): 283-294.
[19] 杨俊涛, 楼文娟.风驱雨CFD模拟及平均雨荷载计算方法研究[J]. 空气动力学学报, 2011, 29(5): 600-606.
YANG J T, LOU W J.The wind driver rain CFD simulation and average rain load calculation method research[J]. Acta aerodynamica sinica, 2011, 29(5): 600-606.
[20] 李延, 郭涛, 常红亮.基于欧拉壁面液膜模型的三维热气防冰腔数值仿真[J]. 北京航空航天大学学报, 2018, 44(5): 959-966.
LI Y, GUO T, CHANG H L.Numerical simulation of 3D hot-air anti-icing chamber based on Eulerian wall film model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 959-966.

基金

四川省科技计划(2017JY0112); 贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2019]133); 六盘水师范学院高层次人才科研启动基金(LPSSYKYJJ201816)

PDF(2314 KB)

Accesses

Citation

Detail

段落导航
相关文章

/