为评估双馈风电场经串补送出系统的振荡风险,该文重点对双馈风力发电机的负电阻效应进行研究。首先,结合双馈风力发电机常用的控制结构,通过分析其扰动响应特性建立端口导纳模型。在此基础上,通过等效电路分析建立异步发电机转子回路的等效阻抗模型。进一步地,对转子回路的负电阻特性进行研究,并定义2个特征指标来定性评估系统的振荡风险。最后,通过时域电磁暂态仿真验证所建立模型的准确性和特征指标的有效性。算例分析表明:双馈风力发电机的负电阻效应主要取决于异步发电机的转子回路,会受到运行转速、转子电阻及转子侧换流器控制器参数等的影响。
Abstract
For the oscillations risk assessment of the double-fed induction generator (DFIG) transmitted by the series-compensated grid, the negative-resistance effect of the DFIG is specially investigated in this paper. Firstly, based on the common control structure, the port-admittance model of the DFIG is established by analyzing its response characteristics to disturbances. On the basis, the equivalent rotor impedance of asynchronous generator is derived based on the equivalent electrical circuit analysis. Subsequently, the negative-resistance characteristics of the rotor circuit are further investigated and two characteristic indexes are defined to evaluate the oscillations risk. Finally, the accuracy of the port-admittance model and the effectiveness of the characteristic indexes are verified through the time-domain electro-magnetic transient simulation. From case studies, it indicates that the negative-resistance effect of the DFIG mainly depends on the rotor circuit of asynchronous generator. It is influenced by the rotating speed of the generator, the resistance of the rotor windings, and the controller parameters of the rotor-side converter.
关键词
双馈风力发电机 /
电力系统稳定性 /
稳定性标准 /
电气阻抗 /
负电阻
Key words
DFIG /
electric power system stability /
stability criteria /
electric impedance /
negative resistance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WU B, LIANG Y Q, ZARGARI N, 等. 风力发电系统的功率变换与控制[M]. 卫三民, 周京华, 王政, 等, 译.北京: 机械工业出版社, 2012.
WU B, LIANG Y Q, ZARGARI N, et al. Power conversion and control of wind energy systems[M]. WEI S M, ZHOU J H, WANG Z, et al Trans.Beijing: China Machine Press, 2012.
[2] ADAMS J, PAPPU V A, DIXIT A.Ercot experience screening for sub-synchronous control interaction in the vicinity of series capacitor banks[C]//2012 IEEE Power and Energy Society General Meeting, San Diego, USA, 2012.
[3] 李明节, 于钊, 许涛, 等. 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41(4): 1035-1042.
LI M J, YU Z, XU T, et al. Study of complex oscillation caused by renewable energy integration and its solution[J]. Power system technology, 2017, 41(4): 1035-1042.
[4] 董晓亮, 田旭, 张勇, 等. 沽源风电场串补输电系统次同步谐振典型事件及影响因素分析[J]. 高电压技术, 2017, 43(1): 321-328.
DONG X L, TIAN X, ZHANG Y, et al. Practical SSR incidence and influencing factor analysis of DFIG-based series-compensated transmission system in Guyuan farms[J]. High voltage engineering, 2017, 43(1): 321-328.
[5] 刘博文, 张新燕, 常喜强, 等. 基于SWT的风电汇集地区非同步振荡PMU暂态录波数据分析[J]. 太阳能学报, 2020, 41(1): 217-224.
LIU B W, ZHANG X Y, CHANG X Q, et al. Analysis of non-synchronous oscillation based on SWT and transient wave recorded data of PMU in wind farm integration area[J]. Acta energiae solaris sinica, 2020, 41(1): 217-224.
[6] 栗然, 卢云, 刘会兰, 等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术, 2013, 37(11): 3073-3079.
LI R, LU Y, LIU H L, et al. Mechanism analysis on sub-synchronous oscillation caused by grid-integration of doubly-fed wind power generation system via series-compensation[J]. Power system technology, 2013, 37(11): 3073-3079.
[7] 黄耀, 王西田, 陈昆明, 等. 双馈风电场次同步相互作用的机理仿真验证与实用抑制策略[J]. 电网技术, 2016, 40(8): 2364-2369.
HUANG Y, WANG X T, CHEN K M, et al. SSI mechanism simulation validation and practical mitigation strategy of DFIG-based wind farms[J]. Power system technology, 2016, 40(8): 2364-2369.
[8] OSTADI A, YAZDANI A, VARMA R K.Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line[J]. IEEE transactions on power delivery, 2009, 24(3): 1504-1514.
[9] 赵书强, 李忍, 高本锋, 等. 双馈风电机组经串补并网的振荡模式分析[J]. 高电压技术, 2016, 42(10): 3263-3273.
ZHAO S Q, LI R, GAO B F, et al. Modal analysis of doubly-fed induction generator integrated to compensated grid[J]. High voltage engineering, 2016, 42(10): 3263-3273.
[10] MIAO Z.Impedance-model-based SSR analysis for type 3 wind generator and series-compensated network[J]. IEEE transactions on energy conversion, 2012, 27(4): 984-991.
[11] VIETO I, SUN J.Sequence impedance modeling and analysis of type-Ⅲ wind turbines[J]. IEEE transactions on energy conversion, 2017, 33(2), 537-545.
[12] 王亮, 谢小荣, 姜齐荣, 等. 大规模双馈风电场次同步谐振的分析与抑制[J]. 电力系统自动化, 2014, 38(22): 26-31.
WANG L, XIE X R, JIANG Q R, et al. Analysis and mitigation of SSR problems in large-scale wind farms with doubly-fed wind turbines[J]. Automation of electric power systems, 2014, 38(22): 26-31.
[13] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161.
GAO B F, LIU J, LI R, et al. Studies of sub-synchronous control interaction in wind turbine generators[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 154-161.
[14] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060.
WANG W S, ZHANG C, HE G Q, et al. Overview of research on sub-synchronous oscillations in large-scale wind farm integrated system[J]. Power system technology, 2017, 41(4): 1050-1060.
[15] HARNEFORS L, WANG X, YEPES A G, et al. Passivity-based stability assessment of grid-connected VSCs—An overview[J]. IEEE journal of emerging and selected topics in power electronics, 2016, 4(1): 116-125.
[16] 程时杰, 曹一家, 江全元.电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009.
CHENG S J, CAO Y J, JIANG Q Y.Theory and methods for sub-synchronous oscillation in power systems[M]. Beijing: Science Press, 2009.
[17] 邢富冲.一元三次方程求解新探[J]. 中央民族大学学报(自然科学版), 2003, 12(3): 207-218.
XING F C.Investigation on solutions of cubic equations with one unknown[J]. Journal of the Central University for Nationalities(natural sciences edition), 2003, 12(3): 207-218.
基金
国网总部科技项目(复杂电网下新能源发电基地的次/超同步振荡风险评估、抑制与防控技术研究SGXJ0000TKJS1800238)