基于趋势聚类与决策树的风电功率多区间复合短期预测方法

师洪涛, 高天霁, 丁茂生, 李梓鑫, 张智峰, 闫佳

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 333-340.

PDF(1686 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1686 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 333-340. DOI: 10.19912/j.0254-0096.tynxb.2020-0734
电化学储能安全性与退役动力电池梯次利用关键技术专题

基于趋势聚类与决策树的风电功率多区间复合短期预测方法

  • 师洪涛1, 高天霁1, 丁茂生1,2, 李梓鑫1, 张智峰1, 闫佳1
作者信息 +

WIND POWER MULTI-INTERVAL COMPOSITE SHORT-TERM PREDICTION METHOD BASED ONTREND CLUSTERING AND DECISION TREE

  • Shi Hongtao1, Gao Tianji1, Ding Maosheng1,2, Li Zixin1, Zhang Zhifeng1, Yan Jia1
Author information +
文章历史 +

摘要

首先对如何提取风电功率的趋势特征以及建立合适的短期预测模型进行分析,进而对不同功率趋势下的预测精度展开研究。为了提高在多区间下的复合预测性能,提出一种基于趋势聚类与决策树的风电功率多区间复合短期预测方法,即在不同的功率趋势分类中,进行不同的概率估计,然后将分类估计数值复合为完整的估计结果,提高了在多复合区间条件下预测结果的覆盖率,且通过算法模型的优化保证预测速度和性能。以上研究均采用算例验证了所提方法的有效性。

Abstract

In this paper, the methods how to extract the trend characteristics of wind power and develop short term forescasting model are analyzed firstly. The study about the prediction accuracy improved under different power trends is carried out. Then, in order to improve the performance of composite prediction in multi-interval, a method based on trend clustering and decision tree for multi-interval composite wind power short-term prediction is proposed. Namely in the classification of different power trend, different probability estimates are carried out, and then the classified estimation values are compounded into the complete estimation results, in which the coverage of the prediction results under the condition of multi-compound interval is improved. Meanwhile, the algorithm model is optimized to ensure the prediction speed and performance. Finally, examples are used to verify the validity of the proposed method.

关键词

风电 / 聚类计算 / 决策树 / 置信区间 / 神经网络 / 预测

Key words

wind power / clustering algorithm / decision tree / confidence interval / neural network / forecasting

引用本文

导出引用
师洪涛, 高天霁, 丁茂生, 李梓鑫, 张智峰, 闫佳. 基于趋势聚类与决策树的风电功率多区间复合短期预测方法[J]. 太阳能学报. 2022, 43(4): 333-340 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0734
Shi Hongtao, Gao Tianji, Ding Maosheng, Li Zixin, Zhang Zhifeng, Yan Jia. WIND POWER MULTI-INTERVAL COMPOSITE SHORT-TERM PREDICTION METHOD BASED ONTREND CLUSTERING AND DECISION TREE[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 333-340 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0734
中图分类号: TM614   

参考文献

[1] 杨茂, 陈郁林.风电功率波动特性定量刻画及应用研究[J]. 太阳能学报, 2019, 40(6): 1771-1779.
YANG M, CHEN Y L.Quantitative characterization and application of wind power fluctuation characteristics[J]. Acta energiae solaris sinica, 2019, 40(6): 1771-1779.
[2] 陈贞, 倪维斗, 李政.风电特性的初步研究[J]. 太阳能学报, 2011, 32(2): 210-215.
CHEN Z, NI W D, LI Z.Preliminary study on wind power characteristics[J]. Acta energiae solaris sinica, 2011, 32(2): 210-215.
[3] 许晨宇.基于专用数值天气预报的风电功率预测系统[D]. 广州: 华南理工大学, 2018.
XU C Y.Wind power forecast system based on special numerical weather forecast[D]. Guangzhou: South China University of Technology, 2018.
[4] 杜勇, 齐肖阳, 王秀娟.数学建模中智能优化算法教学方法探究[J]. 高师理科学刊, 2019, 39(6): 73-76.
DU Y, QI X Y, WANG X J.Research on teaching methods of intelligent optimization algorithm in mathematical modeling[J]. Science journal of normal university, 2019, 39(6): 73-76.
[5] 田壁源, 刘琪, 张新燕, 等. 基于APSO-GSA和相关向量机的短期风电功率预测[J]. 电力系统保护与控制, 2020, 48(2): 107-114.
TIAN B Y, LIU Q, ZHANG X Y, et al. Short term wind power prediction based on apso-gsa and correlation vector machine[J]. Power system protection and control, 2020, 48(2): 107-114.
[6] 汤亮亮, 任华, 乔颖, 等. 基于改进蚁群算法的海上风电集群输电系统拓扑优化[J]. 可再生能源, 2018, 36(12): 1826-1832.
TANG L L, REN H, QIAO Y, et al. Topological optimization of offshore wind power cluster power transmission system based on improved ant colony algorithm[J]. Renewable energy resources, 2018, 36(12): 1826-1832.
[7] 霍剑光, 任贵政, 杨扬.基于LASSO的神经网络权值阈值优化方法[J]. 数学理论与应用, 2017, 37(1): 61-66.
HUO J G, REN G Z, YANG Y.Nn weight threshold optimization method based on lasso[J]. Mathematical theory and applications, 2017, 37(1): 61-66.
[8] 张建华, 杨琦, 李卫国.基于改进粒子群算法的并网风电场准入功率极限计算[J]. 太阳能学报, 2010, 31(5): 630-635.
ZHANG J H, YANG Q, LI W G.Power limit calculation of grid-connected wind farm access power based on improved particle Swarm optimization[J]. Acta energiae solaris sinica, 2010, 31(5): 630-635.
[9] 赵凯, 侯玉强.基于自组织映射神经网络K-means聚类算法的风电场多机等值建模[J]. 浙江电力, 2019, 38(8): 30-36.
ZHAO K, HOU Y Q.Multi-machine equivalent modeling of wind farm based on self-organizing mapping neural network k-means clustering algorithm[J]. Zhejiang electric power, 2019, 38(8): 30-36.
[10] 姚剑峰, 凌静, 曲立楠, 等. 基于改进FCM聚类算法的清洁能源典型场景构建[J]. 电网与清洁能源, 2019, 35(4): 76-82.
YAO J F, LING J, QU L N, et al. Construction of typical clean energy scene based on improved FCM clustering algorithm[J]. Power system and clean energy, 2019, 35(4): 76-82.
[11] 师洪涛, 杨静玲, 丁茂生, 等. 基于小波-BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35(16): 44-48.
SHI H T, YANG J L, DING M S, et al. A short-term wind power prediction method based on wavelet-BP neural network[J]. Automation of electric power systems, 2011, 35(16): 44-48.
[12] 孙鹤旭, 孙泽贤, 张靖轩.基于并行模糊C-均值聚类的风电机组发电机故障诊断研究[J]. 太阳能学报, 2020, 41(3): 8-14.
SUN H X, SUN Z X, ZHANG J X.Study on fault diagnosis of wind turbine generator based on parallel fuzzy c-means clustering[J]. Acta energiae solaris sinica, 2020, 41(3): 8-14.
[13] 张学清, 梁军.风电功率时间序列混沌特性分析及预测模型研究[J]. 物理学报, 2012, 61(19): 70-81.
ZHANG X Q, LIANG J.Chaotic characteristics analysis and prediction model of wind power time series[J]. Acta physica sinica, 2012, 61(19): 70-81.
[14] 杨冬强.风力发电短期功率预测研究[D]. 郑州: 郑州大学, 2016.
YANG D Q.Study on short-term power prediction of wind power[D]. Zhenghzou: Zhengzhou University, 2016.
[15] 成卫青, 卢艳红.一种基于最大最小距离和SSE的自适应聚类算法[J]. 南京邮电大学学报(自然科学版), 2015, 35(2): 102-107.
CHENG W Q, LU Y H.Adaptive clustering algorithm based on maximum and minimum distances, and SSE[J]. Journal of Nanjing University of Posts and Telecommunications(natural science edition), 2015, 35(2): 102-107.
[16] 邢书豪.基于随机森林算法的电力系统短期负荷预测研究[D]. 青岛: 青岛大学, 2020.
XING S H.Research on power system short-term load forecasting based on stochastic forest algorithm[D]. Qingdao: Qingdao University, 2020.
[17] 王真富, 王梦仑, 陈森, 等. 基于贪心优化算法的光伏小屋设计[J]. 太阳能学报, 2013, 34(10): 1775-1780.
WANG Z F, WANG M L, CHEN S, et al. Photovoltaic cabin design based on greedy optimization algorithm[J]. Acta energiae solaris sinica, 2013, 34(10): 1775-1780.
[18] 管于华.统计学[M]. 第三版.北京: 高等教育出版社, 2005.
GUAN Y H.Statistics[M]. Third edition.Beijing:Higher Education Press, 2005.

基金

宁夏自然科学基金(2018AAC03105); 宁夏高等学校一流学科建设(电子科学与技术学科)资助项目(NXYLXK2017A07)

PDF(1686 KB)

Accesses

Citation

Detail

段落导航
相关文章

/