对于含分布式电源(DG)的主动配电网,基于同步相量测量单元(PMU)的监测信息进行故障分析与处理,从而达到定位目的。首先采用拓扑优化法对PMU进行布点优化配置,同时将系统划分为不同区域。利用PMU监测所得实时潮流和电气量信息,基于功率增量方向原理可初步判断发生故障的区域;其次计算候选故障区域内各条区段发生不同类型故障时,各节点PMU相电流计算值,并与实际短路时的电流测量值相比较,利用区段定位优化模型所得计算误差选出故障区段;最后对于故障区段,利用基于双端相量信息的测距公式得到具体故障位置。仿真基于改进IEEE 33节点配电系统进行了不同位置、不同类型以及不同电源出力控制的短路实验,结果显示在不同短路条件下的系统定位误差均低于1%。
Abstract
As for active electric power distribution with distributed generation, the fault location method based on the monitoring information of phasor measurement unit(PMU) is proposed to analyze the fault process and achieve the goal of location. First, the configuration of PMU is optimized based on the topology optimization method, with the electric power distribution divided into different areas meantime. Then according to the real-time measured voltage and current phasors of PMU, by the principle of power increment direction the fault area can be located. Secondly, calculating the current value of each PMU of corresponding node under different types of faults in each segment of the candidate fault area, after compared with the actual short-circuit current measurement value, the fault segment can be selected based on the calculated error of the locating optimization model. For the fault segment, the double-end phasor information is finally utilized to detect the specific fault location. The simulations of different types of short-circuit at different location and different power output control are conducted under the improved IEEE 33 nodes power distribution system. The results show that the locating error under different short circuit conditions is less than 1%.
关键词
配电网 /
分布式电源 /
同步相量测量单元 /
故障定位 /
拓扑优化法 /
定位优化模型
Key words
electric power network /
distributed generation /
phasor measurement unit /
fault location /
topology optimization /
locating optimization model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈云超, 王慧芳, 黄志华, 等. 配电网保护配置方案评估方法[J]. 电力系统自动化, 2019, 43(20): 138-146.
SHEN Y C, WANG H F, HUANG Z H, et al. Evaluation method of protection scheme for distribution network[J]. Automation of electric power systems, 2019, 43(20): 138-146.
[2] 徐丙垠, 薛永端, 冯光, 等. 配电网接地故障保护若干问题的探讨[J]. 电力系统自动化, 2019, 43(20): 1-7.
XU B Y, XUE Y D, FENG G, et al. Discussion on problems of ground fault protection in distribution network[J]. Automation of electric power systems, 2019, 43(20): 1-7.
[3] 周成瀚, 邹贵彬, 杜肖功, 等. 基于正序电流故障分量的有源配电网纵联保护[J]. 中国电机工程学报, 2020, 40(7): 2102-2112, 2390.
ZHOU C H, ZOU G B, DU X G, et al. Active distribution network longitudinal protection based on positive sequence current fault component[J]. Proceedings of the CSEE, 2020, 40(7): 2102-2112, 2390.
[4] 郭晓龙, 秦文萍, 韩肖清, 等. 基于故障后电流相位的含DGs配电网故障快速方向识别算法及RTDS仿真验证[J]. 太阳能学报, 2020, 41(3): 133-139.
GUO X L, QIN W P, HAN X Q, et al. Fast direction identification algorithm and RTDS simulation verification of fault in distribution network with DGs based on current phase after fault[J]. Acta energiae solaris sinica, 2020, 41(3): 133-139.
[5] KRISHNATHEVAR R, NGU E E.Generalized impedance-based fault location for distribution systems[J]. IEEE transactions on power delivery, 2012, 27(1): 449-451.
[6] DASHTI R, DAISY M, SHAKER H R, et al. Impedance-based fault location method for four-wire power distribution networks[J]. IEEE access, 2018, 6(1): 1342-1349.
[7] 齐郑, 杭天琦, 李悦悦.消弧线圈并联小电阻接地方式下的行波故障测距[J]. 电力系统自动化, 2020, 44(1): 175-182.
QI Z, HANG T Q, LI Y Y.Traveling wave fault location in the case of arc suppression coils connected in parallel with small resistance grounding[J]. Automation of electric power systems, 2020, 44(1): 175-182.
[8] 郭宁明, 杨飞, 覃剑, 等. 基于遗传算法及信号谱分析的电网故障定位方法[J]. 电力系统自动化, 2016, 40(15): 79-85.
GUO N M, YANG F, QIN J, et al. Power grid fault location method based on genetic algorithm and signal spectrum analysis[J]. Automation of electric power systems, 2016, 40(15): 79-85.
[9] 陶维青, 杨刚, 丁明, 等. 改进模因算法在含DG配电网故障定位中的应用[J]. 电子测量与仪器学报, 2016, 30(2): 265-273.
TAO W Q, YANG G, DING M, et al. Application of improved memetic algorithm in fault location of distribution network with DG[J]. Journal of electronic measurement and instrumentation, 2016, 30(2): 265-273.
[10] DOBAKHSHARI A S, RANJBAR A M.Application of synchronised phasor measurements to wide-area fault diagnosis and location[J]. IET generation, transmission and distribution, 2014, 8(4): 716-729.
[11] USMAN M U, FARUQUE M O.Validation of a PMU-based fault location identification method for smart distribution network with photovoltaics using real-time data[J]. IET generation, transmission and distribution, 2018, 12(21): 5824-5833.
[12] ZHANG Y, WANG J, LIU J.Attack identification and correction for PMU GPS spoofing in unbalanced distribution systems[J]. IEEE transactions on smart grid, 2020, 11(1): 762-773.
[13] 于力, 焦在滨, 王晓鹏, 等. 基于PMU的中压配电网精确故障定位方法及关键技术[J]. 电力系统自动化, 2020, 44(18): 30-38.
YU L, JIAO Z B, WANG X P, et al. PMU-based accurate fault location method and key technologies for medium voltage distribution network[J]. Automation of electric power systems, 2020, 44(18): 30-38.
[14] WU Z, DU X, GU W, et al. Optimal PMU placement considering load loss and relaying in distribution networks[J]. IEEE access, 2018, 6(1): 33645-33653.
[15] 肖繁, 夏勇军, 张侃君, 等. 含新能源接入的配电网网络化保护原理研究[J]. 电工技术学报, 2019, 34(2): 709-719.
XIAO F, XIA Y J, ZHANG K J, et al. Research on the principle of network protection of distribution network with new energy access[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 709-719.
[16] 陈汝斯, 林涛, 毕如玉, 等. 基于有限量测数据的主动配电网电压暂降源精确定位策略[J]. 电工技术学报, 2019, 34(1): 312-320.
CHEN R S, LIN T, BI R Y, et al. Accurate positioning strategy of active distribution network voltage sag source based on limited measurement data[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 312-320.
基金
国家重点研发计划(2017YFB0902801); 安徽省科技攻关项目(1704a0902004)