当阴影条件变化时,并联光伏组件的全局最大功率点(MPP)会随之改变。为了实现太阳能发电最大化,要求最大功率点跟踪(MPPT)方法始终能实时而准确地锁定住并联光伏组件的全局MPP。不同阴影条件下并联光伏组件会呈现不同的外特性特征,如多阶梯的电流电压特性以及多峰值的功率电压特性。基于此现象,该文提出一种基于并联光伏组件外特性的MPPT方法,理论分析及仿真结果都表明:该方法不会陷入局部MPP,在无阴影、静态阴影和动态阴影条件下均具有平稳、快速和准确跟踪全局MPP的能力。
Abstract
Global maximum power point(MPP) of paralleled photovoltaic(PV) modules will change with their shading conditions. In order to maximize solar power generation, maximum power point tracking(MPPT) methods are required to lock the global MPP of the paralleled PV modules quickly and accurately in all the time. The paralleled PV modules will show different external characteristics when they are under different shading conditions. For example, the current-voltage characteristics have several steps and the power-voltage characteristics have several peaks. An MPPT method based on the external characteristics of the paralleled PV modules is proposed by utilizing such a phenomenon. Both the theoretical analysis and simulation results show that the proposed method can avoid falling into local MPPs. Moreover, it can track the global MPP smoothly, quickly, and accurately under the conditions of non-shading, static shading, and dynamic shading.
关键词
光伏组件 /
最大功率点跟踪 /
电流电压特性 /
功率电压特性
Key words
PV modules /
MPPT /
current voltage characteristics /
power voltage characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUBUDHI B, PRADHAN R. A comparative study on maximum power point tracking techniques for photovoltaic power systems[J]. IEEE transactions on sustainable energy, 2013, 4(1): 89-98.
[2] ESRAM T, CHAPMAN P L.Comparison of photovoltaic array maximum power point tracking techniques[J]. IEEE transactions on energy conversion, 2007, 22(2): 439-449.
[3] FEMIA N, PETRONE G, SPAGNUOLO G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE transactions on power electronics, 2005, 20(4): 963-973.
[4] LIU F R, DUAN S X, LIU F, et al. A variable stepsize INC MPPT method for PV systems[J]. IEEE transactions on industrial electronics, 2008, 55(7): 2622-2628.
[5] BASOGLU M E.An improved 0.8 VOC model based GMPPT technique for module level photovoltaic power optimizers[J]. IEEE transactions on industry applications, 2019, 55(2): 1913-1921.
[6] GOKMEN N,KARATEPE E, UGRANLI F, et al. Voltage band based global MPPT controller for photovoltaic systems[J]. Solar energy, 2013, 98: 322-334.
[7] SHARMA P, AGARWAL V.Maximum power extraction from a partially shaded PV array using shunt-series compensation[J]. IEEE journal of photovoltaics, 2014, 4(4): 1128-1137.
[8] SHARMA P, AGARWAL V.Exact maximum power point tracking of grid-connected partially shaded PV source using current compensation concept[J]. IEEE transactions on power electronics, 2014, 29(9): 4684-4692.
[9] LI H, YANG D, SU W Z, et al. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading[J]. IEEE transactions on industrial electronics, 2018, 66(1): 265-275.
[10] KERMADI M, SALAM Z, AHMED J, et al. An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions[J]. IEEE transactions on industrial electronics, 2019, 66(9): 6990-7000.
[11] LYDEN S, HAQUE M E.A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions[J]. IEEE transactions on power electronics, 2016, 31(6): 4171-4181.
[12] CHAVES E N, REIS J H, COELHO E A A, et al. Simulated annealing-MPPT in partially shaded PV systems[J]. IEEE Latin America transactions, 2016, 14(1): 235-241.
[13] SHAH N, RAJAGOPALAN C.Experimental evaluation of a partially shaded photovoltaic system with a fuzzy logic-based peak power tracking control strategy[J]. IET renewable power generation, 2016, 10(1): 98-107.
[14] MOHAMED A A S, BERZOY A, MOHAMED O A.Design and hardware implementation of FL-MPPT control of PV systems based on GA and small-signal analysis[J]. IEEE transactions on sustainable energy, 2017, 8(1): 279-290.
[15] PENG B R, HO K C, LIU Y H.A novel and fast MPPT method suitable for both fast changing and partially shaded conditions[J]. IEEE transactions on industrial electronics, 2018, 65(4): 3240-3251.
[16] VILLALVA M G, GAZOLI J R, FILHO E R. Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE transactions on power electronics, 2009, 24(5): 1198-1208.
[17] 戚军, 陈怡, 周文委.局部阴影下光伏阵列自适应 MPPT方法研究[J]. 太阳能学报, 2015, 36(5): 1182-1189.
QI J,CHEN Y, ZHOU W W. Research on adaptive MPPT method for PV array under partial shade[J]. Acta energiae solaris sinica, 2015, 36(5): 1182-1189.
[18] 陈怡.一种输入输出电流均连续的升压型DC-DC变换器, 中国: 201821850674.0[P]. 2020-08-18.
CHEN Y.A boost DC-DC converter with continuous input and output currents, 中国: 201821850674.0[P]. 2020-08-18.
基金
浙江省基础公益研究计划(LGG20E070004)