建立风力机塔筒-复合筒型基础-冲刷地基的耦合动力分析模型,通过实测数据验证数值模型的准确性。基于已完成的复合筒基地基冲刷试验,在耦合动力模型中实现冲刷地基模型的准确建立,考虑局部冲刷后应力历史对剩余土体参数的影响,分析风力机结构体系的动力响应特征,将计算结果与不考虑冲刷影响的计算结果进行对比。结果表明:地基的冲刷使得风力机结构的自振频率降低,增大了复合筒基风力机结构体系运行的危险;考虑地基冲刷后复合筒基的运动速度有较明显的提升,提升幅度最大约为8%,因此在进行复合筒基风力机设计时,必须考虑地基冲刷对动力特性的影响;在局部冲刷对复合筒基风电结构体系动力响应影响的研究中可忽略冲刷后应力历史对土质参数的影响。
Abstract
Firstly, the dynamic coupling model of wind generator tower-composite bucket foundation-foundation is established. The accuracy of the numerical model is verified by measured data from the actual engineering. Then, based on the published experimental results of wave and current scour around composite bucket foundation, the accurate scoured topography is established in the numerical model and the effect of the stress history after local scour on the remaining soil foundation parameters is considered. At last, the dynamic response characteristics of the wind turbine structure system are analyzed. The results are compared with those without considering local scour. Analysis results show that local scour to foundation reduces the natural vibration frequency of wind turbine structure, which leads to bigger generation risk of the wind turbine structure system. The vibration speed of the composite bucket foundation increase obviously after considering local scour of the foundation, and the maximum increase value reached to 8%. So the influence of local scour on the dynamic response of the structure system must be considered in the design of offshore wind turbines with composite bucket foundation, but the effect of the stress history after local scour on the remaining soil foundation parameters can be ignored.
关键词
风力机 /
局部冲刷 /
模态 /
动力响应 /
复合筒型基础 /
应力历史
Key words
local scour /
mode /
dynamic response /
composite bucket foundation /
stress history
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NIE B C, LI J C.Technical potential assessment of offshore wind energy over shallow continent shelf along China coast[J]. Renewable energy, 2018, 128: 391-399.
[2] LIU M M, LIAN J J, YANG M.Experimental and numerical studies on lateral bearing capacity of bucket foundation in saturated sand[J]. Ocean engineering, 2017, 144: 14-20.
[3] YU T S, ZHANG Y T, ZHANG S B, et al. Experimental study on scour around a composite bucket foundation due to waves and current[J]. Ocean engineering, 2019, 189: 106302.
[4] 刘红军, 杨奇.局部冲刷对风力机支撑系统承载性能的影响[J]. 岩土力学, 2018, 39(2): 722-727.
LIU H J, YANG Q.Influence of local scour on bearing performance of wind turbine supporting system[J]. Rock and soil mechanics, 2018, 39(2): 722-727.
[5] 宋波, 赵伟娜, 双妙.冲刷深度对海上风电塔地震动力响应的影响分析[J]. 工程科学学报, 2019, 41(10): 1351-1359.
SONG B, ZHAO W N, SHUANG M.Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action[J]. Chinese journal of engineering, 2019, 41(10): 1351-1359.
[6] 陆罗观.考虑冲刷影响的大直径筒型基础竖向承载力研究[D]. 天津: 天津大学, 2018.
LU L G.Study on vertical bearing capacity of large diameter bucket foundation considering scour effect[D]. Tianjin: Tianjin University, 2018.
[7] 漆文刚, 高福平.冲刷对海上风力机单桩基础水平承载特性的影响[J]. 中国科学: 物理学力学天文学, 2016, 46(12): 124710.
QI W G, GAO F P.Effects of scour on horizontal bearing behavior of monopile foundations for offshore wind turbines[J]. Scientia sinica physica,mechanica & astronomica, 2016, 46(12): 124710.
[8] BENNETT C R, LIN C, PARSONS R, et al. Evaluation of behavior of a laterally loaded bridge pile group under scour conditions[C]//Structures Congress, Austin, 2009.
[9] 王其昊.组合荷载下考虑冲刷效应的单桩承载性能研究[D]. 南京: 东南大学, 2018.
WANG Q H.Research on bearing performance of scoured single piles under combined loading[D]. Nanjing: Southeast University, 2018.
[10] ZHANG H, CHEN S L, LIANG F Y.Effects of scour-hole dimensions and soil stress history on the behavior of laterally loaded piles in soft clay under scour conditions[J]. Computers and geotechnics, 2017, 84: 198-209.
[11] 胡丹, 李芬, 张开银.冲刷作用下单桩水平承载特性试验研究及数值模拟[J]. 水利学报, 2015, 46(1): 263-266.
HU D, LI F, ZHANG K Y.Experiment on the lateral load capacity of single piles under scour conditions[J]. Journal of hydraulic engineering, 2015, 46(1): 263-266.
[12] 何彦承, 木林隆, 冯昌明,等. 冲刷对桩井基础水平承载特性影响的试验研究[J]. 地下空间与工程学报, 2017, 13(S1): 149-154.
HE Y C, MU L L, FENG C M, et al. Model tests on the influence of scour on lateral response of deep foundations[J]. Chinese journal of underground space and engineering, 2017, 13(S1): 149-154.
[13] 代浩, 戴国亮, 杨炎华.波浪作用下局部冲刷群桩动力特性试验研究[J]. 水运工程, 2017(1): 147-151, 157.
DAI H, DAI G L, YANG Y H.Experimental study on dynamic response of local scoured group piles under wave loading[J]. Port & waterway engineering, 2017(1): 147-151, 157.
[14] BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al. Static,seismic and stability analyses of a prototype wind turbine steel tower[J]. Engineering structures, 2002, 24(8): 1015-1025.
[15] 于通顺, 练继建, 柳国环, 等. 黏弹性人工边界-地基-基础-塔筒风致响应特性分析[J]. 应用基础与工程科学学报, 2014, 22(5): 976-988.
YU T S, LIAN J J, LIU G H, et al. Characteristic analysis on wind-induced response for the system of visco-elastic artificial boundary-soil-foundation-wind turbine tower[J]. Journal of basic science and engineering, 2014, 22(5): 976-988.
[16] 张舒博.新型复合筒型基础动力响应特性研究[D]. 青岛: 中国海洋大学, 2020.
ZHANG S B.Research on dynamic response of the novel composite bucket foundation of offshore wind turbine[D]. Qingdao: Ocean University of China, 2020.
基金
国家自然科学基金(52071304; 51509230); 山东省重点研发计划(2019GHY112044); 广州市珠江科技新星专项(201806010164