基于气象相似性的光伏电站输出功率估计

纪德洋, 金锋, 冬雷, 郝颖

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 173-179.

PDF(1809 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1809 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 173-179. DOI: 10.19912/j.0254-0096.tynxb.2020-0769

基于气象相似性的光伏电站输出功率估计

  • 纪德洋1,2, 金锋1, 冬雷1,2, 郝颖3
作者信息 +

ESTIMATION OF OUTPUT POWER OF PHOTOVOLTAIC POWER STATION BASED ON METEOROLOGICAL SIMILARITY

  • Ji Deyang1,2, Jin Feng1, Dong Lei1,2, Hao Ying3
Author information +
文章历史 +

摘要

为了得到光伏电站的输出功率,提出一种基于气象相似性的输出功率估计方法。该方法通过对大量历史数据的分析,利用光伏电站输出功率与气象数据密切相关的特点,基于皮尔逊相关系数在历史数据中计算得到与待估计输出功率相似的气象时刻,再根据相似气象时刻的输出功率估计待估计时刻的输出功率。利用甘肃省某光伏电站采集的包含9个气象要素的历史数据,经过数据预处理之后挑选出214 d不含有异常数据的数据集作为数据样本,并随机选出14 d不同天气类型的数据作为测试样本,其余作为训练样本。通过对测试样本数据进行验证,所提出的估计方法平均绝对误差仅为0.46 MW,相对误差仅为15.74%,具有较高的计算准确度,且适用的气象条件更广泛。

Abstract

In order to obtain the output power of photovoltaic power plants, an output power estimation method based on meteorological similarity is proposed. This method analyzes a large number of historical data, using the characteristics of photovoltaic power plant output power and meteorological data are closely related, based on the Pearson correlation coefficient to calculate the similar meteorological time to the estimated output power in the historical data. Finally, according to the similar meteorological time’s output power estimates the output power at the time to be estimated. The used historical data contain 9 meteorological elements from a photovoltaic power station in Gansu Province. After data preprocessing, a 214-day data set containing no abnormal data are selected as the data sample, in which 14-day data of different weather types are randomly selected as the test samples, and the rest are used as training samples. Case study indicate that the average absolute error and relative error of the proposed estimation method are only 0.46 MW and 15.74%, respectively. It has high calculation accuracy and is applicable to a wider range of meteorological conditions.

关键词

光伏电站 / 光伏出力 / 数据分析 / 气象相似性 / 皮尔逊相关系数

Key words

photovoltaic power plant / electric power generation / data analysis / meteorological similarty / Pearson correlation coefficient

引用本文

导出引用
纪德洋, 金锋, 冬雷, 郝颖. 基于气象相似性的光伏电站输出功率估计[J]. 太阳能学报. 2022, 43(5): 173-179 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0769
Ji Deyang, Jin Feng, Dong Lei, Hao Ying. ESTIMATION OF OUTPUT POWER OF PHOTOVOLTAIC POWER STATION BASED ON METEOROLOGICAL SIMILARITY[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 173-179 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0769
中图分类号: TP274   

参考文献

[1] 王文静, 王斯成. 我国分布式光伏发电的现状与展望[J]. 中国科学院院刊, 2016, 31(2): 165-172.
WANG W J, WANG S C.Status and prospect of Chinese distributed photovoltaic power generation system[J]. Bulletin of Chinese academy of sciences, 2016, 31(2): 165-172 .
[2] 李芬, 陈正洪, 何明琼, 等. 太阳能光伏发电的现状及前景[J]. 水电能源科学, 2011, 29(12): 188-192.
LI F, CHEN Z H, HE M Q, et al.Review of status and prospect of solar photovoltaic power generation[J]. Water resources and power, 2011, 29(12): 188-192 .
[3] 龚春景. 大容量太阳能光伏发电站交流输出功率计算方法研究[J]. 华东电力, 2009, 37(8): 1309-1312.
GONG C J.Research on the calculation method of large capacity solar energy PV power generation station with AC output[J]. East China electric power, 2009, 37(8): 1309-1312 .
[4] 周芳, 胡明辅, 周国平. 铅垂面上太阳辐射计算方法探讨[J]. 太阳能研究与应用, 2007, 35(5): 55-59.
ZHOU F, HU M F, ZHOU G P.Calculation method of solar radiation on vertical surface[J]. Research & application of solar energy, 2007, 35(5): 55-59.
[5] TINA G, GAGLIANO S, RAITI S.Hybrid solar/wind power system probabilistic modelling for long-term performance assessment[J]. Solar energy, 2006, 80(5): 578-588.
[6] 梁双, 胡学浩, 张东霞, 等. 基于随机模型的光伏发电置信容量评估方法[J]. 电力系统自动化, 2012, 36(13): 32-37.
LIANG S, HU X H, ZHANG D X, et al.Probabilistic models based evaluation method for capacity credit of photovoltaic generation[J]. Automation of electric power systems, 2012, 36(13): 32-37.
[7] 郭康, 徐玉琴, 张丽, 等. 计及光伏电站随机出力的配电网无功优化[J]. 电力系统保护与控制, 2012, 40(10): 53-58.
GUO K, XU Y Q, ZHANG L, et al.Reactive power optimization of distribution network considering PV station random output[J]. Power systm protection and control, 2012, 40(10): 53-58.
[8] 姚荃. 考虑不确定因素的光伏发电出力预测[D]. 北京:华北电力大学, 2012.
YAO Q.Output forecasting of photovoltaic system considering uncertain factors[D]. Beijing: North China Electric Power University, 2012.
[9] KARIM S A A, SINGH B S M, RAZALI R, et al. Data compression technique for modeling of global solar radiation[C]//IEEE International Conference on Control System,Computing and Engineering, Computing and Engineering, Penang, Malaysia, 2011: 348-352.
[10] 贺琳, 李英姿. 改进GM(1,1)残差修正模型在光伏发电量短期预测中的应用[J]. 北京建筑工程学院学报, 2008, 24(4): 61-65.
HE L, LI Y Z.Short-term forecasting for photovoltaic power system based on advanced residual error modified GM(1,1) model[J]. Journal of Beijing University of Civil Engineering and Architecture, 2008, 24(4): 61-65.
[11] 丁明, 徐宁舟. 基于马尔可夫链的光伏发电系统输出功率短期预测方法[J]. 电网技术, 2011, 35(1): 152-157.
DING M, XU N Z.A method to forecast short-term output power of photovoltaic generation system based on markov chain[J]. Power system technology, 2011, 35(1): 152-157.
[12] 王守相, 张娜. 基于灰色神经网络组合模型的光伏短期出力预测[J]. 电力系统自动化, 2012, 36(19): 37-41.
WANG S X, ZHANG N.Short-term output power forecast of photovoltaic based on a grey and neural network hybrid model[J]. Automation of electric power systems, 2012, 36(19): 37-41.
[13] 彭周宁, 林培杰, 赖云锋, 等. 基于混合灰色关联分析-广义回归神经网络的光伏电站短期功率预测[J]. 电气技术, 2019, 20(10): 11-18.
PENG Z N, LIN P J, LAI Y F, et al.Short-term power prediction for photovoltaic power plants based on hybrid grey relational analysis-generalized regression neural network[J]. Electrical engineering, 2019, 20(10): 11-18.
[14] 王炳忠. 太阳辐射计算讲座第四讲地外斜面辐射量的计算[J]. 太阳能, 2000(2): 16-17.
WANG B Z.Lecture on solar radiation calculation lecture 4 calculation of radiation from extraterrestrial incline[J]. Solar energy, 2000(2): 16-17.
[15] 赵波, 薛美东, 葛晓慧, 等. 光伏发电系统输出功率计算方法研究[J]. 电网与清洁能源, 2010, 26(7): 19-24.
ZHAO B, XUE M D, GE X H, et al.Research on calculating methods of output power of the photovoltaic system[J]. Power system and clean energy, 2010, 26(7): 19-24.
[16] 陈鸿琳, 李欣然, 冷华, 等. 运用PSO和GRNN的短期负荷二维组合预测[J]. 电力系统及其自动化学报, 2018, 30(2): 85-89.
CHEN H L, LI X R, LENG H, et al.Bidirectional combined Short-term load dorecasting by using PSO and GRNN[J]. Proceedings of the CSU-EPSA, 2018, 30(2): 85-89.
[17] 邹红波, 伏春林, 喻圣. 基于Akima-LMD和GRNN的短期负荷预测[J]. 电工电能新技术, 2018, 37(1): 51-56.
ZOU H B, FU C L, YU S.Short-term load forecasting based on Akima-LMD and GRNN[J]. Advanced technology of electrical engineering and energy, 2018, 37(1): 51-56.
[18] 肖心园, 江冰, 任其文, 等. 基于插值法和皮尔逊相关的光伏数据清洗[J]. 信息技术, 2019, 5: 19-22, 28.
XIAO X Y, JIANG B, REN Q W, et al.Photovoltaic data cleaning based on interpolation and Pearson correlation[J]. Information technology, 2019, 5: 19-22, 28.
[19] 李旭. 基于典型日出力特性分析的光伏电站功率预测研究[D]. 北京: 华北电力大学, 2016.
LI X.Research on power prediction method for photovoltaic power plant based on the outout characteristic under typical weather[D]. Beijing: North China Electric Power University, 2016 .
[20] 刘博洋. 基于实测数据的大规模光伏出力特性及其短期预测方法研究[D]. 吉林: 东北电力大学, 2017.
LIU B Y.Research on large-scale photovoltaic output power characteristic and ITS forecasting method based on measured[D]. Jilin: Northeast Electric Power University, 2017.
[21] 于若英, 陈宁, 苗淼, 等. 考虑天气和空间相关性的光伏电站输出功率修复方法[J]. 电网技术, 2017, 41(7): 2228-2236.
YU R Y, CHEN N, MIAO M, et al.A repair method for PV power station output data considering weather and spatial correlations[J]. Power system technology, 2017, 41(7): 2228-2236.

基金

中山市2020年社会公益与基础研究项目(200813093628997)

PDF(1809 KB)

Accesses

Citation

Detail

段落导航
相关文章

/