斯特林发动机瞬态模型及特性分析

邱浩, 王树林, 肖刚

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 277-282.

PDF(2784 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2784 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 277-282. DOI: 10.19912/j.0254-0096.tynxb.2020-0787
电化学储能安全性与退役动力电池梯次利用关键技术专题

斯特林发动机瞬态模型及特性分析

  • 邱浩, 王树林, 肖刚
作者信息 +

TRANSIENT MODEL AND CHARACTERISTIC ANALYSIS OF STIRLING ENGINE

  • Qiu Hao, Wang Shulin, Xiao Gang
Author information +
文章历史 +

摘要

为获得斯特林发动机的动态特性和优化方案,将损失机制和压力梯度耦合进控制方程中,提出一维瞬态斯特林循环分析模型及分析方法,并针对GPU-3斯特林发动机进行模型验证和特性分析。模型的指示功率相对误差平均值约为4.8%,热效率的相对误差小于1%。当氦气工质在热源温度为977 K、平均压强为2.76 MPa时,输出功率随转速的升高先增大后减小,同时流动阻力损失由0.174 kW上升至3.179 kW,最佳运行转速范围约2500~3000 r/min。最大的3项损失分别为流动阻力损失、配气活塞穿梭传热损失和有限速度压力损失。回热器压降占总压降的90%以上,瞬态值高达188 kPa,减小回热器压降损失是减小流动阻力损失的有效途径。

Abstract

In order to optimize design of Stirling engines, a transient model is proposed, based on basic control equations coupled with loss mechanism and pressure gradient synchronously, and the model is verified by experimental data of a GPU-3 Stirling engine. The results show that the average relative error is 4.8% between numerical and experimental results for indicated power, and it is less than 1% for the relative error of thermal efficiency. The peak of indicated power occurs at 3000 r/min for an average helium pressure of 2.76 MPa and heating temperature of 977 K, and the friction resistance loss increases from 0.174 kW to 3.179 kW with rotational speed increasing, demonstrating the optimal operating speed ranges 2500-3000 r/min. The three main losses are the friction resistance loss, displacer shuttle heat transfer loss and finite speed pressure loss. The pressure drop on regenerator accounts for more than 90% of the total, with a transient value of 188 kPa, indicating it is an effective way to alleviate flow resistance loss by optimizing a regenerator.

关键词

斯特林发动机 / 数值模拟 / 瞬态分析 / 振荡流动

Key words

Stirling engine / numerical simulation / transient analysis / oscillating flow

引用本文

导出引用
邱浩, 王树林, 肖刚. 斯特林发动机瞬态模型及特性分析[J]. 太阳能学报. 2022, 43(4): 277-282 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0787
Qiu Hao, Wang Shulin, Xiao Gang. TRANSIENT MODEL AND CHARACTERISTIC ANALYSIS OF STIRLING ENGINE[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 277-282 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0787
中图分类号: TK123   

参考文献

[1] URIELI I, BERCHOWITZ D M.Stirling cycle engine analysis[M]. Bristol: Adam Hilger Ltd., 1984: 86-123.
[2] DING G Z, CHEN W M, ZHENG T Y, et al. Volume ratio optimization of Stirling engine by using an enhanced model[J]. Applied thermal engineering, 2018, 140: 615-621.
[3] UCHMAN W, REMIORZ L, GRZYWNOWICZ K, et al. Parametric analysis of a beta Stirling engine—A prime mover for distributed generation[J]. Applied thermal engineering, 2018, 145: 693-704.
[4] BABAELAHI M, SAYYAADI H.A new thermal model based on polytropic numerical simulation of Stirling engines[J]. Applied energy, 2015, 141: 143-159.
[5] SAYYAADI H, GHASEMI H.A novel second-order thermal model of Stirling engines with consideration of losses due to the speed of the crack system[J]. Energy conversion and management, 2018, 168: 505-521.
[6] ANDERSEN S K.Numerical simulation of cyclic thermodynamic processes[D]. Nickelbin: Technical University of Denmark, 2006.
[7] WANG K, DUBEY S, CHOO F H, et al. A transient one-dimensional numerical model for kinetic Stirling engine[J]. Applied energy, 2016, 183: 775-790.
[8] GEDEON D.Sage user’s guide[M]. v11 Edition.Athens:Gedeon Associates, 2016: 1-72.
[9] 陶文铨.数值传热学[M]. 第2版.西安: 西安交通大学出版社, 2001:198-203.
[10] 施妙根, 顾丽珍.科学和工程计算基础[M]. 北京: 清华大学出版社, 2016: 303-307.
[11] THIEME L G.Low-power baseline test results for the GPU 3 Stirling engine[R]. Cleveland, OH, USA: NASA Lewis Research Center, 1979.
[12] FAWAD A, HUANG H, KHAN A.Numerical modeling and optimization of beta-type Stirling engine[J]. Applied thermal engineering, 2018, 149: 385-400.
[13] 黄怡青, 倪明江, 甘智华, 等. 基于三阶分析模型的斯特林发动机系统模拟和优化[J]. 太阳能学报, 2020, 41(6): 310-316.
HUANG Y Q, NI M J, GAN Z H, et al. Simulation and optimization for a Stirling engine based on third-order analysis model[J]. Acta energiae solaris sinica, 2020, 41(6): 310-316.

基金

国家重点研发计划(2017YFA0205700)

PDF(2784 KB)

Accesses

Citation

Detail

段落导航
相关文章

/