基于SMARTS模式的紫外辐射多参数时空变化及影响因子模拟

申彦波, 王炳忠

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 175-183.

PDF(1691 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1691 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 175-183. DOI: 10.19912/j.0254-0096.tynxb.2020-0790
电化学储能安全性与退役动力电池梯次利用关键技术专题

基于SMARTS模式的紫外辐射多参数时空变化及影响因子模拟

  • 申彦波1, 王炳忠2
作者信息 +

SIMULATION OF TEMPORAL AND SPATIAL VARIATION CHARACTERISTICS OF ULTRAVIOLET RADIATION MULTI-PARAMETERS AND THEIR INFLUENCE FACTORS BASED ON SMARTS

  • Shen Yanbo1, Wang Bingzhong2
Author information +
文章历史 +

摘要

为弥补中国紫外辐射实测数据的不足,该文基于SMARTS辐射传输模式计算分析标准大气、无云条件下280~400 nm 波段紫外总辐射Eg、315~400 nm波段UVA、280~315 nm波段UVB、紫外指数UVI、红斑有效紫外辐射CIE、立面紫外总辐射等多参数时空变化特征及大气浑浊度、臭氧含量、海拔高度、地表反照率等因素对各参数的定量影响。结果表明:1)紫外辐射各参数随纬度升高而降低,各纬度全年各月的紫外辐射与全波段总辐射之比基本约为5%;2)紫外辐射各参数夏季高而冬季低,正午高而早晚低,高纬度的年变率大于低纬度,夏至前后的3个月,中低纬度的紫外辐射参数较接近,均可能对人体健康产生较大影响;3)UVI在夏季全晴天情况下,正午时分有可能接近11,UVA和UVB正午时分分别可达70和2 W/m2,低纬度地区朝南立面上的紫外总辐照度在夏至日的峰值可达70 W/m2,与水平面上的值相当;4)能见度从2 km升高至50 km时,紫外辐照度增加一倍以上,随着能见度升高,紫外辐照度的增加幅度减缓;臭氧总量从200 DU翻倍增加至400 DU时,UVI指数降低一半以上,降低幅度随臭氧总量增加呈减缓趋势;海拔高度从0 km升高至5 km时,紫外辐照度增加约1/4,增加幅度随海拔高度的升高保持相对均匀;地表反照率从0.2倍增至0.4时,朝南立面紫外辐射增加1/5,朝南立面上的紫外总辐射中来源于地面反射的部分在夏季占比较大,而冬季占比较小。尽管上述只是无云条件下的理论模拟结果,但其所反映出的紫外辐射和影响因素基本特征仍可供气象学和医学领域参考。

Abstract

In order to make up for the shortage of the measured data of ultraviolet radiation in China, this paper calculates and analyzes ultraviolet radiation under the standard atmosphere and cloudless conditions based on the SMARTS. The temporal and spatial variation characteristics of ultraviolet radiation multi-parameters are researched, such as the global ultraviolet radiation of Eg 280 nm-400 nm, UVA of 315 nm-400 nm, UVB of 280 nm-315 nm, ultraviolet index UVI, erythema effective ultraviolet radiation CIE, global ultraviolet irradiance on the vertical plane, and the quantitative influence of atmospheric turbidity, ozone content, altitude, surface albedo and other factors on each parameter. The results show that: 1) The parameters of UV radiation decrease with the increase of latitude, and the ratio of global UV radiation to the global radiation of the whole spectrum is about 5%. 2) The parameters of UV radiation are high in summer and low in winter, high in noon and low in morning and evening, and the annual variability of high latitude is higher than that of low latitude, and the parameters of UV radiation in middle and low latitude are similar in the three months before and after the Summer Solstice Day, which may have a great impact on human health. 3) UVI may be close to 11 at noon in summer when it is completely clear, and UVA and UVB may reach 70 W/m2 and 2 W/m2 at noon, respectively. The peak value of the global ultraviolet irradiance on the south vertical plane in low latitude area can reach 70 W/m2 in the Summer Solstice Day, which is equivalent to the value on the horizontal plane; 4) When the visibility increases from 2 km to 50 km, the ultraviolet irradiance will double; On the other hand, with the increase of visibility, the increase of UV irradiance is slowed down. When the total amount of ozone is doubled from 200 DU to 400 DU, the UVI decreases by more than half, and the decreasing range slowed down with the increase of total ozone. When the altitude increases from 0 to 5 km, the UV irradiance increases by about 1/4, and the increasing range remained relatively uniform with the increase of altitude. When the surface albedo doubles from 0.2 to 0.4, the UV radiation on the south vertical plane increases by 1/5, and the global UV radiation on the south vertical plane from the reflection of the ground are larger in summer, but smaller in winter. Although the above results are only the theoretical simulation results under cloudless conditions, the basic characteristics of UV radiation and influencing factors reflected in the results can still be used for reference in the fields of meteorology and medical science.

关键词

紫外辐射 / 多参数 / 影响因子 / 数值模拟 / SMARTS模式

Key words

ultraviolet radiation / multiple parameters / influence factor / numerical simulation / SMARTS

引用本文

导出引用
申彦波, 王炳忠. 基于SMARTS模式的紫外辐射多参数时空变化及影响因子模拟[J]. 太阳能学报. 2022, 43(4): 175-183 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0790
Shen Yanbo, Wang Bingzhong. SIMULATION OF TEMPORAL AND SPATIAL VARIATION CHARACTERISTICS OF ULTRAVIOLET RADIATION MULTI-PARAMETERS AND THEIR INFLUENCE FACTORS BASED ON SMARTS[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 175-183 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0790
中图分类号: TK51   

参考文献

[1] SECKMEYER G, BAIS A, BERNHARD G, et al. Instruments to measure solar ultraviolet radiation, part 1: Spectral instruments[R]. WMO/TD-No.1066, World Meteorological Organization, Geneva, Switzerland,2001, 31 pp.
[2] SECKMEYER G, BAIS A, BERNHARD G, et al. Instruments to measure solar ultraviolet radiation, part 2: Broadband instruments measuring erythemally weighted solar irradiance[R]. WMO/TD-No.1289, World Meteorological Organization, Geneva, Switzerland, 2008:2.
[3] SECKMEYER G, BAIS A, BERNHARD G, et al. Instruments to measure solar ultraviolet radiation, part 3: Multi-channel filter instruments[R]. WMO/TD-No.1537, World Meteorological Organization, Geneva, Switzerland, 2010: 251.
[4] SECKMEYER G, BAIS A, BERNHARD G, et al. Instruments to measure solar ultraviolet radiation, part 4: Array spectroradiometers[R]. WMO/TD-No.1538, World Meteorological Organization, Geneva, Switzerland, 2010: 239.
[5] BURROWS W R.Report of the WMO-WHO meeting of experts on standardization of UV indices and their dissemination to the public[R]. WMO/TD-No.921, World Meteorological Organization, Geneva, Switzerland, 1997.
[6] World Health Organization(WHO), World Meteorological Organization(WMO), United Nations Environment Programme (UNEP), The international commision on non-ionizing radiation protection (ICNIRP).Global solar UV index: A practical guide[R]. WHO, 2002: 27pp.
[7] 汤洁, 王炳忠, 姚萍.国产紫外辐射仪器性能测试(Ⅰ)——室内静态性能测试[J]. 太阳能学报, 2005: 26(2): 43-46.
TANG J, WANG B Z, YAO P.Intercomparison of China-made UV pyranometers(Ⅰ)—Performance test in laboratory[J]. Acta energiae solaris sinica, 2005, 26(2): 43-46.
[8] 汤洁, 王炳忠, 刘广仁.国产紫外总日射表性能测试(Ⅱ)——室外测试及与国外同类产品比较[J]. 太阳能学报, 2005, 26(3): 19-26.
TANG J, WANG B Z, LIU G R.Intercomparison of China-made UV pyranometers (Ⅱ)——Outdoor test and intercomparison with foreign UV pyranometers[J]. Acta energiae solaris sinica, 2005, 26(3): 19-26.
[9] GB/T 21005—2007, 紫外红斑效应参照谱、标准红斑剂量和紫外指数[S].
GB/T 21005—2007, UV erythema reference action spectrum standard erythema dose and UV index[S].
[10] GB/T 34048—2017, 紫外辐射表[S].
GB/T 34048—2017, Ultraviolet radiometer[S].
[11] GB/T 36744—2018, 紫外线指数预报方法[S].
GB/T 36744—2018, Forecasting method for ultraviolet index[S].
[12] 吴厚水.对太阳总辐射和某些植被的反射及透射辐射的分光测量[J]. 生态学报, 1987, 7(1): 18-26.
WU H S.A study of spectral radiation upon some cropland in the Zhujiang Delte, China[J]. Acta ecologica sinica, 1987, 7(1): 18-26.
[13] 刘玮, 代彩红, 田燕.紫外辐射的科学基础及应用[M]. 北京: 人民卫生出版社, 2013.
LIU W, DAI C H, TIAN Y.Scientific basis and application of ultraviolet radiation[M]. Beijing: People’s Medical Publishing House, 2013.
[14] GUEYMARD C A.Parameterized transmittance model for direct beam and circumsolar spectral irradiance[J]. Solar energy, 2001, 71(5): 325-346.
[15] 王炳忠, 申彦波.实用太阳能光谱应用模式——SMARTS模式[M]. 北京: 气象出版社, 2010.
WANG B Z, SHEN Y B.SMARTS model, a practical solar energy spectrum application model[M]. Beijing: Meteorology Press, 2010.
[16] MICHALSKY J, ANDERSON G P, BARNARD J, et al. Shortwave radiative closure studies for clear skies during the atmospheric radiation measurement2003 aerosol intensive observation period[J]. Journal of geophysical research: Atmospheres, 2006, 111(D14): D14S90.
[17] GUEYMARD C A.Prediction and validation of cloudless shortwave solar spectra incident on horizontal, tilted, or tracking surfaces[J]. Solar energy, 2008, 82(3): 260-271.
[18] 王炳忠.紫外线知识讲座——紫外辐射定义及其分类[J]. 太阳能, 2003(4): 6-9.
WANG B Z.Lecture on ultraviolet radiation-definition and classification of ultraviolet radiation[J]. Solar energy, 2003(4): 6-9.
[19] 刘扬, 赵萍, 朱旭东, 等. 我国东北地区紫外线辐射对皮肤早期损伤的流行病学研究[J]. 环境与健康杂志, 1997(5): 26-32.
LIU Y, ZHAO P, ZHU X D, et al. Epidemiological study on early dermal impairment induced by ultraviolet radiation in North East of China[J]. Journal of environment and health, 1997(5): 26-32.
[20] 王芳, 刘扬.基于人体模型模拟三亚市不同地理朝向眼部暴露紫外辐射分布的研究[J]. 环境与职业医学, 2017(3): 15-24.
WANG F, LIU Y.Simulation of ocular exposure to ultraviolet spectral irradiance in different geographic directions in Sanya based on a manikin[J]. Journal of environmental & occupational medicine, 2017(3): 15-24.

基金

第二次青藏高原综合科学考察研究清洁能源现状与远景评价专题(2019QZKK0804)

PDF(1691 KB)

Accesses

Citation

Detail

段落导航
相关文章

/