In order to study the dynamic characteristics of interactions between the large-scale wind farms and grid, dynamic equivalent modeling methods for wind farms has attracted extensive attention. Aiming at the existing problems that the equivalence of the wind farm collection network is relatively rough and the accuracy of equivalent models is often ignored during asymmetric faults, a dynamic equivalent modeling method, which is suitable for short-circuit fault analysis for wind farm, is proposed in the paper. Firstly, the decoupling of the collector network is carried out according to the power flow calculation results. Secondly, the modularity based K-means algorithm is adopted for clustering the wind turbine system output ac voltages to realize the optimal multi-machine aggregation. Considering the influence of distributed capacitance of the collector network, the centralized reactive compensation capacitor is set for the wind farm after aggregation. Then, in order to ensure the validity of the equivalent model during asymmetric faults, the equivalent method of zero-sequence network is proposed. Finally, the electromagnetic transient model built in the time-domain simulation software PSCAD/EMTDC verifies the effectiveness of the proposed method.
Xue Yicheng, Zhang Zheren, Xu Zheng.
DYNAMIC EQUIVALENT MODEL OF WIND FARM FOR SHORT-CIRCUIT FAULTS ANALYSIS[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 327-335 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0791
中图分类号:
TM743
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾鸣, 张硕. “十四五”电力规划的综合能源发展探析[J]. 中国电力企业管理, 2020(13): 26-28. ZENG M, ZHANG S.An analysis of the comprehensive energy development of the 14th five-year plan for electric power[J]. China power enterprise management, 2020(13): 26-28. [2] 任必兴, 杜文娟, 王海风. 静止同步补偿器与直驱永磁风机的次同步控制交互研究[J]. 电工技术学报, 2018, 33(24): 5884-5896. REN B X, DU W J, WANG H F.Analysis on sub-synchronous control interaction between static synchronous compensator and permanent magnet synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5884-5896. [3] 杨国良, 郝帅, 杨梓, 等. 风电系统改进T型逆变器并网优化模型预测控制[J]. 太阳能学报, 2020, 41(6): 53-60. YANG G L, HAO S, YANG Z, et al.Predictive control of improved T-type inverter grid-connected optimization model in wind power system[J]. Acta energiae solaris sinica, 2020, 41(6): 53-60. [4] 刘扬, 唐飞, 施浩波, 等. 一种考虑风电场并网的电力系统在线同调识别策略[J]. 电网技术, 2019, 43(4): 1236-1245. LIU Y, TANG F, SHI H B, et al.An online coherency identification strategy for power system considering wind farm integration[J]. Power system technology, 2019, 43(4):1236-1245. [5] TANG G, XU Z, DONG H F, et al.Sliding Mode robust control based active-power modulation of multi-terminal HVDC transmissions[J]. IEEE transactions on power systems, 2016, 31(2): 1614-1623. [6] DONG H, XU Z, SONG P C, et al.Optimized power redistribution of wind farms integrated VSC-MTDC transmissions after onshore converter outage[J]. IEEE transactions on industrial electronics, 2017, 64(11): 8948-8958. [7] KUNJUMUHAMMED L D, PAL B C, GUPTA R, et al.Stability analysis of a PMSG-based large offshore wind farm connected to a VSC-HVDC[J]. IEEE transactions on energy conversion, 2017, 32(3): 1166-1176. [8] 郭志, 陈洁, 黄净, 等. 基于改进遗传KM聚类算法的风电场机群划分方法[J]. 可再生能源, 2016, 34(2): 238-243. GUO Z, CHEN J, HUANG J, et al.Study on equivalent model of wind farms based on improved genetic K-means algorithm[J]. Renewable energy resources, 2016, 34(2): 238-243. [9] 王增平, 杨国生, 汤涌, 等. 基于特征影响因子和改进BP算法的直驱风机风电场建模方法[J]. 中国电机工程学报, 2019, 39(9): 2604-2615. WANG Z P, YANG G S, TANG Y, et al.Modeling method of direct-driven wind generators wind farm based on feature influence factors and improved BP algorithm[J]. Proceedings of the CSEE, 2019, 39(9): 2604-2615. [10] BU S Q, DU W J, WANG H F, et al.Probabilistic analysis of small-signal stability of large-scale power systems as affected by penetration of wind generation[J]. IEEE transaction on power systems, 2012, 27(2): 762-770. [11] 陈昆明, 马成斌. 基于DIgSILENT的风电场等值建模研究[J]. 电气技术, 2020, 21(4): 15-19, 75. CHEN K M, MA C B.Research on wind farm equivalent modeling based on DIgSILENT[J]. Electrical engineering, 2020, 21(4): 15-19, 75. [12] 董文凯, 杜文娟, 王海风. 用于振荡稳定性分析的并网风电场动态模型研究[J]. 中国电机工程学报, 2021, 41(1): 75-87, 399. DONG W K, DU W J, WANG H F.Research on dynamic equivalent model of a grid-connected wind farm for oscillation stability analysis[J]. Proceedings of the CSEE, 2021, 41(1): 75-87, 399. [13] 张剑, 何怡刚. 基于轨迹灵敏度分析的永磁直驱风电场等值模型参数辨识[J]. 电工技术学报, 2020, 35(15): 3303-3313. ZHANG J, HE Y G.Parameters identification of equivalent model of permanent magnet synchronous generator wind farm based on analysis of trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3303-3313. [14] 陈树勇, 王聪, 申洪, 等. 基于聚类算法的风电场动态等值[J]. 中国电机工程学报, 2012, 32(4): 11-19, 24. CHEN S Y, WANG C, SHEN H, et al.Dynamic equivalence for wind farms based on clustering algorithm[J]. Proceedings of the CSEE, 2012, 32(4): 11-19, 24. [15] ZHOU Y H, ZHAO L, MATSUO M, et al.A Dynamic weighted aggregation equivalent modeling approach for the DFIG wind farm considering the weibull distribution for fault analysis[J]. IEEE transactions on industry applications, 2019, 55(6): 5514-5523. [16] 周佩朋, 李光范, 孙华东, 等. 基于频域阻抗分析的直驱风电场等值建模方法[J]. 中国电机工程学报, 2020, 40(增刊): 84-90. ZHOU P P, LI G F, SUN H D, et al.Equivalent modeling method of PMSG wind farm based on frequency domain impedance analysis[J]. Proceedings of the CSEE, 2020, 40(S1): 84-90. [17] 张星, 李龙源, 胡晓波, 等. 基于风电机组输出时间序列数据分群的风电场动态等值[J]. 电网技术, 2015, 39(10): 2787-2793. ZHANG X, LI L Y, HU X B, et al.Wind farm dynamic equivalence based on clustering by output time series data of wind turbine generators[J]. Power system technology, 2015, 39(10): 2787-2793. [18] 韩佶, 苗世洪, 李力行, 等. 基于多视角迁移学习的风场内机群划分及等值风场参数综合优化[J]. 中国电机工程学报, 2020, 40(15): 4866-4880. HAN Z, MIAO S H, Li L X, et al.Wind turbines clustering in wind farm based on multi-view transfer learning and synthetic optimization of parameters in equivalent wind farm[J]. Proceedings of the CSEE, 2020, 40(15): 4866-4880. [19] 古庭赟, 杨骐嘉, 林呈辉, 等. 基于单机等值与选择模态分析的风电场等值建模方法[J]. 电力系统保护与控制, 2020, 48(1): 102-111. GU T Y, YANG Q J, LIN C H, et al.A wind farm equivalent modeling method based on single-machine equivalent modeling and selection modal analysis[J]. Power system protection and control, 2020, 48(1): 102-111. [20] EBRAHIMZADEH E, BLAABJERG F, WANG X F, et al.Optimum design of power converter current controllers in large-scale power electronics based power systems[J]. IEEE transactions on industry applications, 2019, 55(3): 2792-2799. [21] ZHOU Y H, ZHAO L, LEE W J.Robustness analysis of dynamic equivalent model of DFIG wind farm for stability study[J]. IEEE transactions on industrial applications, 2018, 54(6): 5682-5690. [22] KIM DE, El-SHARKAWI M A. Dynamic equivalent model of wind power plant using parameter identification[J]. IEEE transactions on energy conversion, 2016, 31(1): 37-45. [23] 陈洁, 郭志, 付翰翔, 等. 基于撬棒控制策略的DFIG风电场动态等值建模研究[J]. 高压电器, 2020, 56(3): 190-196. CHEN J, GUO Z, FU H X, et al.Research on dynamic equivalence modeling of wind farm composed of double fed induction generators based on crowbar control strategy[J]. High voltage apparatus, 2020, 56(3): 190-196. [24] LI W X, CHAO P P, LIANG X D, et al.A practical equivalent method for DFIG wind farms[J]. IEEE transactions on sustainable energy, 2018, 9(2): 610-620. [25] 颜湘武, 李君岩. 基于主成分分析法的直驱式风电场分群方法[J]. 电力系统保护与控制, 2020, 48(5): 127-133. YAN X W, LI J Y.Grouping method of direct drive wind farm based on principal component analysis[J]. Power system protection and control, 2020, 48(5): 127-133. [26] BLAABJERG F, MA K.Wind energy systems[J]. Proceedings of the IEEE, 2017, 41(10): 3192-3199. [27] 吴红斌, 何叶, 赵波, 等. 基于改进K-means聚类算法的风电场动态等值[J]. 太阳能学报, 2018, 39(11): 3232-3238. WU H B, HE Y, ZHAO B, et al.Research on dynamic equivalent of wind farm based on improved K-means clustering algorithm[J]. Acta energiae solaris sinica, 2018, 39(11): 3232-3238. [28] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al.Fast unfolding of communities in large networks[J]. Journal of statistical mechanics-theory and experiment, 2008, P10008: 1742-5468. doi: 10.1088/1742-5468/2008/10/P10008.