水工质波浪能装置液压系统及其监测系统的设计

梁雨婷, 车志伟, 徐明奇

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 493-497.

PDF(1446 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1446 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 493-497. DOI: 10.19912/j.0254-0096.tynxb.2020-0798
电化学储能安全性与退役动力电池梯次利用关键技术专题

水工质波浪能装置液压系统及其监测系统的设计

  • 梁雨婷1, 车志伟2, 徐明奇1
作者信息 +

DESIGN ON WATER HYDRAULIC SYSTEM OF WAVE POWER DEVICE AND ITS MONITORING SYSTEM

  • Liang Yuting1, Che Zhiwei2, Xu Mingqi1
Author information +
文章历史 +

摘要

针对波浪能发电装置的液压系统存在环境污染、安全性差和工作可靠性差等问题,设计一种以水为工质的波浪能发电装置液压系统,对系统组成和液压元件设计进行分析,有效解决传统油压传动存在的问题,为海洋环境中液压系统的优化设计提供一种新思路。同时设计一种基于STM32单片机的液压参数监测系统,可实现对压力、温度、流量、转速的实时监测。在实验室条件下对系统进行测试,结果表明:该液压系统工作性能稳定、监测系统测试精度高,可作为监控液压系统工作状态的有效方式。

Abstract

In order to solve the problems of environmental pollution, poor safety and poor working reliability in the hydraulic system of wave power device, a hydraulic system of wave power device using water as working medium is designed, and compositions of the system and design of hydraulic components are analyzed. The utilization of water as working medium for hydraulic system effectively solves the problems with traditional oil hydraulic transmission and provides a new idea for optimal design of hydraulic system in marine environment. Meanwhile, a monitoring system of hydraulic parameters is designed based on STM32 microcomputer. It is able to monitor pressure, temperature, flow rate and rotational speed in real time. The system is tested under laboratory conditions. The results indicate that the working performance of the hydraulic system is stable, and the monitoring system has high measuring accuracy, which can be used as an effective way to monitor the working state of hydraulic system.

关键词

波浪能 / 液压传动 / 工质 / 单片机 / 监测

Key words

wave power / hydraulic transmission / working fluid / microcomputer / monitoring

引用本文

导出引用
梁雨婷, 车志伟, 徐明奇. 水工质波浪能装置液压系统及其监测系统的设计[J]. 太阳能学报. 2022, 43(4): 493-497 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0798
Liang Yuting, Che Zhiwei, Xu Mingqi. DESIGN ON WATER HYDRAULIC SYSTEM OF WAVE POWER DEVICE AND ITS MONITORING SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 493-497 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0798
中图分类号: TH137   

参考文献

[1] 王凤银, 杨绍辉, 何光宇, 等. 波浪能发电装置及其液压系统研究现状和发展前景[J]. 装备制造技术, 2015(3): 29-31.
WANG F Y, YANG S H, HE G Y, et al. The research situation and development prospect of wave energy power generation device and its hydraulic system[J]. Equipment manufacturing technology, 2015(3): 29-31.
[2] 张雅洁, 赵强, 褚温家.海洋能发电技术发展现状及发展路线图[J]. 中国电力, 2018, 51(3): 94-99.
ZHANG Y J, ZHAO Q, CHU W J.Development and technology roadmap of marine power generation system[J]. Electric power, 2018, 51(3): 94-99.
[3] 张亚群, 盛松伟, 游亚戈, 等. 波浪能装置液压式蓄能系统设计[J]. 机床与液压, 2016, 44(5): 117-121.
ZHANG Y Q, SHENG S W, YOU Y G, et al. Design on hydraulic energy storage system of wave energy converters[J]. Machine tool and hydraulics, 2016, 44(5): 117-121.
[4] 刘银水, 吴德发, 李东林, 等. 深海液压技术应用与研究进展[J]. 机械工程学报, 2018, 54(20): 14-23.
LIU Y S, WU D F, LI D L, et al. Applications and research progress of hydraulic technology in deep sea[J]. Journal of mechanical engineering, 2018, 54(20): 14-23.
[5] 赵双杰, 刘志林, 范银辉.纯水液压传动技术的发展与应用[J]. 内燃机与配件, 2016(8): 48-50.
ZHAO S J, LIU Z L, FAN Y H.Development and application of water hydraulic technology[J]. Internal combustion engine and parts, 2016(8): 48-50.
[6] 黄建明, 陈俐.浅谈纯水液压传动技术[J]. 甘肃科技, 2015, 31(10): 40-41.
HUANG J M, CHEN L.Discussion on water hydraulic technology[J]. Gansu science and technology, 2015, 31(10): 40-41.
[7] 曾现敏, 谷志珉, 苏婕.液压技术在海洋环境中的应用分析[J]. 科技展望, 2015(10): 59.
ZENG X M, GU Z M, SU J.The application research of hydraulic technology in marine environment[J]. Outlook of science and technology, 2015(10): 59.
[8] 赵建新.纯水液压传动缸的研制及动态特性研究[D]. 昆明: 昆明理工大学, 2017.
ZHAO J X.Design and research on dynamic and static characteristics of water hydraulic cylinder[D]. Kunming: Kunming University of Science and Technology, 2017.
[9] 董亚丽.现代液压传动技术发展趋势探究[J]. 山东社会科学, 2016(S1): 221-223.
DONG Y L.Research on development trend of modern hydraulic technology[J]. Shandong social sciences, 2016(S1): 221-223.
[10] 莫焘.轴向柱塞式低压水马达的设计与分析[D]. 成都: 西南交通大学, 2015.
MO T.Design and analysis of a low pressure water hydraulic axial piston motor[D]. Chengdu: Southwest Jiaotong University, 2015.
[11] 张乐, 王悦.基于STM32的指纹识别系统设计[J]. 沈阳大学学报(自然科学版), 2019, 31(2): 113-117.
ZHANG L, WANG Y.Design of fingerprint identification system based on STM32[J]. Journal of Shenyang University(natural science), 2019, 31(2): 113-117.
[12] 柴晓彤, 汪亮, 王永庆, 等. 基于STM32F103单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15-18.
CHAI X T, WANG L, WANG Y Q, et al. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. Vacuum, 2018, 55(5): 15-18.
[13] 常俸瑞, 刘超.基于STM32的电力数据采集装置设计[J]. 自动化技术与应用, 2019, 38(3): 148-152.
CHANG F R, LIU C.Design of electric power data collector based on STM32[J]. Techniques of automation and applications, 2019, 38(3): 148-152.
[14] 王浩, 石慧瑶, 聂鹏.基于STM32的单体液压支柱智能压力巡检系统的设计[J]. 中国设备工程, 2017(2): 112-113.
WANG H, SHI H Y, NIE P.Design of intelligent pressure patrol system for single hydraulic prop based on STM32[J]. China plant engineering, 2017(2): 112-113.

基金

三亚市重点实验室项目基金(L1301)

PDF(1446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/