[1] KAMARZAMAN N A, TAN C W.A comprehensive review of maximum power point tracking algorithms for photovoltaic systems[J]. Renewable and sustainable energy reviews, 2014, 37: 585-598. [2] MAO M X, ZHANG L, HUANG H, et al. Maximum power exploitation for grid-connected PV system under fast-varying solar irradiation levels with modified salp swarm algorithm[J]. Journal of cleaner production, 2020(20) ,122-158. [3] YANG B, ZHONG L N, ZHANG X S.Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition[J]. Journal of cleaner production, 2019, 215: 1203-1222. [4] 潘健, 梁佳成, 黎家成, 等. 阴影光照条件下光伏阵列的最大功率点跟踪方法[J]. 华侨大学学报(自然科学版), 2020, 41(4): 541-548. PAN J, LIANG J C, LI J C, et al. Maximum power point tracking method of photovoltaic array under shadow illumination[J]. Journal of Huaqiao University(natural science edition), 2020, 41(4): 541-548. [5] HASSAN S Z, LI H, KAMAL T, et al. Neuro-fuzzy wavelet based adaptive MPPT algorithm for photovoltaic systems[J]. Energies, 2017, 10(3): 1-16. [6] 李彦志.基于电流扰动的自适应最大功率跟踪算法研究[J]. 通信电源技术, 2020, 37(5): 34-36, 39. LI Y Z.Research on adaptive maximum power tracking algorithm based on current disturbance[J]. Communication power technology, 2020, 37(5): 34-36, 39. [7] 陈亚爱, 周京华, 李津, 等. 梯度式变步长MPPT算法在光伏系统中的应用[J]. 中国电机工程学报, 2014, 34(19): 3156-3161. CHEN Y A, ZHOU J H, LI J, et al. Application of gradient variable step size MPPT algorithm in photovoltaic system[J]. Proceedings of the CSEE, 2014, 34(19): 3156-3161. [8] SEYEDALI M, AMIR H G, A H, SEYEDEH Z M, et al. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advancesin engineering software, 2017, 114(6): 163-191. [9] MAJHI S K, MISHRA A, PRADHAN R, et al. A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization[J]. Progress in artificial intelligence, 2019, 8(3): 343-358. [10] 张严, 秦亮曦.基于Levy飞行策略的改进樽海鞘群算法[J]. 计算机科学, 2020, 47(7): 154-160. ZHANG Y, QIN L X.Improved salvia squirt swarm algorithm based on Levy flight strategy[J]. Computer science, 2020, 47(7): 154-160. [11] 陈雷, 蔺悦, 康志龙.基于衰减因子和动态学习的改进樽海鞘群算法[J]. 控制理论与应用, 2020, 37(8): 1766-1780. CHEN L, LIN Y, KANG Z L.Improved salvia swarm algorithm based on attenuation factor and dynamic learning[J]. Control theory and application, 2020, 37(8): 1766-1780. [12] 沈凯, 陈克, 杭丽君, 等. 一种可提升光伏系统在局部阴影时发电效率的阵列连接策略[J]. 太阳能学报, 2020, 41(4): 51-58. SHEN K, CHEN K, HANG L J, et al. An array connection strategy that can improve the power generation efficiency of photovoltaic systems in partial shadows[J]. Acta energiae solaris sinica, 2020, 41(4): 51-58. [13] 王彦军, 王秋萍, 王晓峰.改进的樽海鞘群算法及在焊接梁问题中的应用[J]. 西安理工大学学报, 2019, 35(4): 484-493. WANG Y J, WANG Q P, WANG X F.Improved salvia algae group algorithm and its application in welded beam problem[J]. Journal of Xi’an University of Technology, 2019, 35(4): 484-493. [14] 陈静, 毛林.一种基于整数小波变换和混沌映射的图像加密算法[J]. 许昌学院学报, 2020, 39(5): 123-127. CHEN J, MAO L.An image encryption algorithm based on integer wavelet transform and chaotic mapping[J]. Journal of Xuchang University, 2020, 39(5): 123-127. [15] FATHY A, ABDELKAREEM M A, OLABI A G, et al. A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2020(2):165-198. [16] 龙文, 蔡绍洪, 焦建军, 等. 一种改进的灰狼优化算法[J]. 电子学报, 2019, 47(1): 169-175. LONG W, CAI S H, JIAO J J, et al. An improved gray wolf optimization algorithm[J]. Chinese journal of electronics, 2019, 47(1): 169-175. |