为进一步提高光伏发电系统的输出效率和动态调节性能,设计基于神经网络的改进扰动观察法最大功率点跟踪(MPPT)控制。该方法在扰动观察法基础上引入神经网络算法,使得在环境剧烈变化时,系统动态调节速度加快。通过系统仿真和硬件实测,得出该改进扰动观察法相比于传统扰动观察法和神经网络法,在一定程度上能加快动态调节速度和减小稳态误差的结论。
Abstract
In order to further improve the output efficiency and dynamic control performance of the photovoltaic power generation system, an improved perturbation observation method MPPT control is designed in this paper based on neural network. A neural network algorithm is introduced based on the perturbation and observation method, so the dynamic adjustment speed is accelerated when the environment changed drastically. Through system simulation and hardware measurement, it’s concluded that, compared with the traditional perturbation observation and neural network method, the dynamic adjustment speed can be accelerated and steady error can be reduced to some extent with the improved perturbation observation method.
关键词
神经网络 /
光伏组件 /
MPPT /
扰动观察法
Key words
neural network /
photovoltaic module /
MPPT /
perturbation observation method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 金碚.资源与环境约束下的中国工业发展[J]. 中国工业经济, 2005(4): 5-14.
JIN B.China’s industrial development under the constraints of resources and environment[J]. China industrial economics, 2005(4): 5-14.
[2] 国家能源局.2019年光伏发电并网运行情况[R]. 2020.
National Energy Administration.The grid-connected operation of photovoltaic power generation in 2019[R]. 2020.
[3] 邵龙, 刘观起, 胡婷.光伏发电系统最大功率点跟踪方法研究综述[J]. 电网与清洁能源, 2013, 29(2): 80-85.
SHAO L, LIU G Q, HU T.A review of research on maximum power point tracking methods for photovoltaic power generation systems[J]. Power grid and clean energy, 2013, 29(2): 80-85.
[4] 刘明亮, 张逸, 范元亮, 等. 一种基于变步长电导增量法的自适应MPPT控制策略[J]. 可再生能源, 2017, 35(5): 681-688.
LIU M L, ZHANG Y, FAN Y L, et al. An adaptive MPPT control strategy based on variable-step conductance increment method[J]. Renewable energy, 2017, 35(5): 681-688.
[5] KADIR A M, SHARIFAH S.Development of artificial neural network based MPPT for photovoltaic system during shading condition[J]. Applied mechanics and materials, 2013, 448/453: 1573-1578.
[6] 沈文忠.太阳能光伏技术与应用[M]. 上海: 上海交通大学出版社, 2013.
SHEN W Z.Solar photovoltaic technology and application[M]. Shanghai: Shanghai Jiaotong University Press, 2013.
[7] 鲍玉军.风光发电及传输技术[M]. 南京: 东南大学出版社, 2014.
BAO Y J.Wind and solar power generation and transmission technology[M]. Nanjing: Southeast University Press, 2014.
[8] 中国电气工程大典编辑委员会.中国电气工程大典,第2卷:电力电子技术[M]. 北京: 中国电力出版社, 2009: 193-194.
Editorial Committee of Chinese Electrical Engineering Dictionary.Chinese electrical engineering dictionary,Volume 2: Power electronics[M]. Beijing: China Electric Power Press, 2009:193-194.
[9] 施鸿宝.神经网络及其应用[M]. 西安: 西安交通大学出版社, 1993.
SHI H B.Neural network and its application[M]. Xi’an: Xi’an Jiaotong University Press, 1993.
[10] VIOTTI P, LIUTI G, GENOVA P DI.Atmospheric Urban Pollution: Applications of an artificial neural network (ANN) to the city of Perugia[J]. Ecological modelling, 2002, 148(1): 27-46.
基金
教育部 2017 年首批新工科研究与实践项目(教高厅函(2018)17号)