基于解析位移形函数的改进风力机叶片梁单元

郭鑫, 李东升, 魏达, 张雨

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 387-392.

PDF(1525 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1525 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 387-392. DOI: 10.19912/j.0254-0096.tynxb.2020-0805
电化学储能安全性与退役动力电池梯次利用关键技术专题

基于解析位移形函数的改进风力机叶片梁单元

  • 郭鑫1, 李东升2, 魏达1, 张雨1
作者信息 +

IMPROVED BEAM ELEMENT FOR WIND TURBINE BLADES BASED ON ANALYTICAL DISPLACEMENT SHAPE FUNCTIONS

  • Guo Xin1, Li Dongsheng2, Wei Da1, Zhang Yu1
Author information +
文章历史 +

摘要

为提高空间梁单元在风力机叶片结构计算方面的精度,提出一种基于解析位移形函数的改进空间梁单元。首先考虑叶片截面偏心的影响,从空间Timoshenko梁的平衡方程出发,构建弯曲位移的解析解插值函数。根据弯曲位移与横向位移和剪切变形的关系,得到横向位移和剪切角的形函数。采用有限元理论,得到改进风力机叶片梁单元的刚度矩阵和质量矩阵。编制有限元程序,用3个算例验证改进叶片梁单元的正确性和精确性。最后对5 MW风力机叶片进行模态分析,准确获取叶片的固有频率和相应振型。

Abstract

An improved spatial Timoshenko beam element is presented to improve the calculation accuracy of wind turbine blades based on analytical displacement shape functions for bending deformation, Firstly, the eccentric effect of blade cross-section is considered, and analytical interpolation functions for bending deformation are constructed according to Timoshenko beam equilibrium equations. Shape functions for the translational deformation and transverse shear deformation are established on the basis of the relationships between total deflection, bending slope and transverse shear. Then the stiffness matrix and mass matrix of the improved blade beam element are derived by the finite element theory. Relevant finite element computation programs are compiled with the correctness and accuracy verified by three typical examples. Finally, modal analysis is conducted for the blades of a 5 MW wind turbine. Consequently, the natural frequencies and corresponding mode shapes of the blades are obtained accurately.

关键词

风力机 / 叶片 / Timoshenko梁 / 空间梁单元 / 有限元法 / 刚度矩阵 / 模态分析

Key words

wind turbines / blades / Timoshenko beam / spatial beam element / finite element method / stiffness matrix / modal analysis

引用本文

导出引用
郭鑫, 李东升, 魏达, 张雨. 基于解析位移形函数的改进风力机叶片梁单元[J]. 太阳能学报. 2022, 43(4): 387-392 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0805
Guo Xin, Li Dongsheng, Wei Da, Zhang Yu. IMPROVED BEAM ELEMENT FOR WIND TURBINE BLADES BASED ON ANALYTICAL DISPLACEMENT SHAPE FUNCTIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 387-392 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0805
中图分类号: TK83   

参考文献

[1] LI D S, HO S C M, SONG G B, et al. A review of damage detection methods for wind turbine blades[J]. Smart materials and structures, 2015, 24(3): 1-24.
[2] 李义金, 王同光.截面参考系对采用梁模型风力机叶片的动态性能影响分析[J]. 太阳能学报, 2017, 38(1): 16-22.
LI Y J, WANG T G.Dynamic analysis of wind turbine blade based on different references[J]. Acta energiae solaris sinica, 2017, 38(1): 16-22.
[3] YU W G.Efficient high-fidelity simulation of multibody systems with composite dimensionally reducible components[J]. Journal of the American Helicopter Society, 2007, 52(1): 49-57.
[4] BAUCHAU O A, CRAIG J I.Structural analysis with application to aerospace structures[M]. Berlon:Springer-Verlag Dordrecht, 2009.
[5] TIMOSHENKO S P.On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philosophical magazines, 1921, 41: 744-746.
[6] RICARDO D F L.A 3D finite beam element for the modelling of composite wind turbine wings[D]. Stockholm: Royal Institute of Technology, 2013.
[7] 尹尧杰, 廖明夫, 吕品.基于Timoshenko梁风力机叶片瞬态响应分析[J]. 太阳能学报, 2017, 38(9): 2552-2558.
YI X J, LIAO M F, LYU P.Analysis of transient response of wind turbine blade based on Timoshenko beam[J]. Acta energiae solaris sinica, 2017, 38(9): 2552-2558.
[8] KIM T, HANSEN A M, BRANNER K.Development of an anisotropic beam finite element for composite wind turbine blades in multibody system[J]. Renewable energy, 2013,59: 172-183.
[9] STÄBLEIN A R, HANSEN M H.Timoshenko beam element with anisotropic cross-sectional properties[C]//Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 2016.
[10] FLEMING I, LUSCHER D J.A model for the structural dynamic response of the CX-100 wind turbine blade[J]. Wind energy, 2014, 17(6): 877-900.
[11] WANG L, LIU X, RENEVIER N, et al. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory[J]. Energy, 2014, 76: 487-501.
[12] NICHOLAS A J.A verification and validation of the geometrically exact beam theory with Legendre spectral finite elements for wind turbine blade analysis[M]. Michigan: ProQuest LLC, 2014.
[13] 吕品, 廖明夫, 徐阳, 等. 基于几何精确梁理论的风力机叶片单元[J]. 太阳能学报, 2015, 36(10): 2422-2428.
LYU P, LIAO M F, XU Y, et al. Beam finite element for wind turbine blade based on geometrically exact beam theory[J]. Acta energiae solaris sinica, 2015, 36(10): 2422-2428.
[14] 陈进格, 沈昕, 王广, 等. 基于升力面和大变形梁的风力机叶片气弹模型[J]. 工程热物理学报, 2018, 39(7): 1469-1475.
CHEN J G, SHEN X, WANG G, et al. Aeroelastic modeling for wind turbine blade based on lifting surface model and nonlinear beam theory[J]. Journal of engineering thermos physics, 2018, 39(7): 1469-1475.
[15] 许晶, 夏文忠, 王宏志, 等. 考虑弯扭耦合的解析型薄壁梁单元[J]. 建筑结构学报, 2019, 40(6): 140-146.
XU J, XIA W Z, WANG H Z, et al. Analytical element for thin-walled beam considering coupling of bending and torsion[J]. Journal of building structures, 2019, 40(6): 140-146.
[16] 胡海昌.弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981.
HU H C.Principle of elastic mechanics and its application[M]. Beijing: Science Press, 1981.
[17] 龚克.单广义位移的深梁理论和中厚板理论[J]. 应用数学和力学, 2000(9): 106-112.
GONG K.Bending theories for beams and plates with single generalized displacement[J]. Applied mathematics and mechanics, 2009(9): 106-112.
[18] BRANNER K, BLASQUES J P, KIM T, et al. Anisotropic beam model for analysis and design of passive controlled wind turbine blades[R]. DTU wind energy report E-0001, February 2012.
[19] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab, Golden, 2009.

基金

国家自然科学基金(51778103); 广东省自然科学基金(2021A1515011770); 汕头大学科研启动基金(NTF18012)

PDF(1525 KB)

Accesses

Citation

Detail

段落导航
相关文章

/