基于k-ω SST湍流模型,利用商业CFD工具ANSYS Fluent 16.0对DU35-17原始翼型、钝尾缘修型翼型及布置V型沟槽钝尾缘翼型进行数值模拟计算,对翼型改进前后的升阻力系数、流场分布和表面压力系数进行对比分析。结果表明,翼型在钝尾缘修型的同时布置V型沟槽,通过改变翼型尾缘处的压力分布和翼型表面的流动分布,对流动分离的抑制有积极影响;布置V型沟槽钝尾缘翼型能增大翼型上下翼面的压力系数差值,降低翼型边界层内因气体黏性所产生的流动减速现象,从而达到减阻增升的效果;布置V型沟槽可有效增大最大升力系数和失速攻角,减小前缘压力波动,提高翼型气动性能。
Abstract
Based on the k-ω SST turbulence model, use the commercial CFD tool ANSYS Fluent 16.0 to numerically simulate the DU35-17 original airfoil, blunt trailing edge modified airfoil, and V-groove blunt trailing edge airfoil. The lift-drag coefficient, flow field distribution and surface pressure coefficient before and after the airfoil modification are compared and analyzed. The results show that the airfoil is configured with V-grooves while blunt trailing edge modification is performed. By changing the pressure distribution at the airfoil trailing edge and the flow distribution on the airfoil surface, it has a positive effect on the suppression of flow separation. The blunt trailing edge airfoil with V-groove can increase the pressure coefficient difference between the upper and lower airfoil surfaces of the airfoil, and reduce the flow deceleration caused by the gas viscosity in the airfoil boundary layer, thereby achieving the effect of reducing drag and increasing rise. To arrange V-grooves can effectively improve the maximum lift coefficient and stall angle of attack, reduce the leading edge pressure fluctuations, and improve the aerodynamic performance of the airfoil.
关键词
风力机 /
翼型 /
减阻 /
数值模拟 /
V型沟槽 /
钝尾缘翼型 /
气动性能
Key words
wind turbines /
airfoil /
drag reduction /
numerical simulation /
V-groove /
blunt trailing edge airfoils /
aerodynamic performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BAKER J P, MAYDAR E A, DAM C P V.Experimental analysis of thick blunt trailing-edge wind turbine airfoils[J]. Journal of solar energy engineering, 2006, 128: 422-431.
[2] 陈进, 郭小锋, 谢翌, 等. 风力机钝尾缘大厚度翼型优化设计方法[J]. 哈尔滨工程大学学报, 2015, 36(7): 970-974.
CHEN J, GUO X F, XIE Y, et al. Optimization design method of wind turbine with blunt trailing edge and large thickness airfoil[J]. Journal of Harbin Engineering University, 2015, 36(7): 970-974.
[3] 张明辉, 王广忠, 卓旺旺.粗糙度对风力机翼型气动性能影响的研究[J]. 机床与液压, 2020, 48(5): 161-165.
ZHANG M H, WANG G Z, ZHUO W W.Research on the influence of roughness on the aerodynamic performance of wind turbine airfoil[J]. Machine tool & hydraulics, 2020, 48(5): 161-165.
[4] 张旭, 张孟洁, 王格格, 等. 叶片表面粗糙条件下钝尾缘翼型优化设计[J]. 中国机械工程, 2019, 30(6): 728-734.
ZHANG X, ZHANG M J, WANG G G, et al. Optimal design of blunt trailing edge airfoil under rough blade surface[J]. China mechanical engineering, 2019, 30(6): 728-734.
[5] WALSH M J.Drag characteristics of V-groove and transverse curvature riblets.In: Hough, G.R.(ed.), Viscous Flow Drag Reduction[C]//Progress in Astronautics and Aeronautics, Vol.72.American Institute of Aeronautics and Astronautics, Washington, DC, 1980: 168-184.
[6] WALSH M J.Turbulent boundary layer drag reduction using riblets[R]. AIAA Paper 82-0169, Jan.1982.
[7] WALSH M J.Riblets as a viscous drag reduction technique[J]. AIAA journal, 1983, 21(4): 485-486.
[8] TOKUNAGA H.LES of channel flow with transverse riblet and drag reduction[C]//37th Aerospace Sciences Meeting and Exhibit, Reno, NV, U S A, 1999.
[9] CHAMORRO L P, ARNDT R E A, SOTIROPOULO S F, et al. Drag reduction of large wind turbine blades through riblets: evaluation of riblet geometry and application strategies[J]. Renewable energy, 2013, 50: 1095-1105.
[10] 张立栋, 林柯妍, 赵欣, 等. 风力机翼型表面V型脊状结构减阻特性的数值研究[J]. 中国电机工程学报, 2018, 38(17): 5150-5157.
ZHANG L D, LIN K Y, ZHAO X, et al. Numerical study on the drag reduction characteristics of the V-shaped ridge structure on the airfoil surface of a wind turbine[J]. Proceedings of the CSEE, 2018, 38(17): 5150-5157.
[11] BOESE M,FOTTNER L.Effects of riblets on the loss behavior of a highly loaded compressor cascade[C]//ASME Turbo Expo 2002: Power for Land, Sea,and Air, Amsterdam, Netherlands, 2002.
[12] STANDISH K J, DAM C P V.Aerodynamic analysis of blunt trailing edge airfoils[J]. Journal of solar energy engineering, 2006, 125(9): 479-487.
[13] 徐浩然, 杨华, 刘超.尾缘加厚的DU系列翼型气动性能数值分析[J]. 农业工程学报, 2014, 30(17): 101-108.
XU H R, YANG H, LIU C.Numerical analysis of aerodynamic performance of DU series airfoil with thickened tail edge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 101-108.
[14] HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. NREL/TP-500-29955, 2001.
[15] 潘家正.湍流减阻新概念的实验探索[J]. 空气动力学学报, 1996, 14(3): 304-310.
PAN J Z.Experimental exploration of the new concept of turbulent drag reduction[J]. Acta aerodynamics, 1996, 14(3): 304-310.
基金
国家国际科技合作专项(2014DFR60990); 国家自然科学基金(51565028); 国家自然科学基金(51965034); 甘肃省科技厅重大专项(17ZD2GA006)