数据驱动的风电机组变桨系统状态监测

金晓航, 泮恒拓, 徐正国

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 409-417.

PDF(4043 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4043 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 409-417. DOI: 10.19912/j.0254-0096.tynxb.2020-0816
电化学储能安全性与退役动力电池梯次利用关键技术专题

数据驱动的风电机组变桨系统状态监测

  • 金晓航1,2, 泮恒拓1, 徐正国3
作者信息 +

CONDITION MONITORING OF WIND TURBINE PITCH SYSTEM USING DATA-DRIVEN APPROACH

  • Jin Xiaohang1,2, Pan Hengtuo1, Xu Zhengguo3
Author information +
文章历史 +

摘要

针对数据采集与监视控制(SCADA)系统存在误报、故障报警滞后等问题,提出一种基于单分类模型的风电机组变桨系统在线状态监测方法。首先,从SCADA数据中提取出与变桨系统相关的特征参数并进行特征重构以进一步提取出更值得关注的桨叶之间的差异化信息。其次,基于单分类支持向量机对历史数据的分析确定变桨系统运行数据的健康边界,进而通过判断实时运行数据是否位于健康边界内部来辨别变桨系统当前的运行状态。最后,以变桨系统的实际工程案例分析验证所提方法的有效性。

Abstract

To address the problems of a high false alarm rate and delayed fault alarm in supervisory control and data acquisition (SCADA) systems, an online condition monitoring method for wind turbine pitch system is proposed. Firstly, the parameters related to the pitch system are extracted from the SCADA data, and these parameters are reconstructed to extract the differential information between the blades. Secondly, the health boundary of the working status of pitch system is found based on the analysis of the historical data by using one-class support vector machine, and then the online health status of the pitch system can be assessed by judging whether the real-time data is within the health boundary. Finally, the effectiveness of the proposed method is verified by two actual engineering cases of the wind turbine’s pitch system.

关键词

风电机组 / SCADA系统 / 状态监测 / 变桨系统 / 单分类支持向量机

Key words

wind turbines / SCADA system / condition monitoring / pitch system / one-class support vector machine

引用本文

导出引用
金晓航, 泮恒拓, 徐正国. 数据驱动的风电机组变桨系统状态监测[J]. 太阳能学报. 2022, 43(4): 409-417 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0816
Jin Xiaohang, Pan Hengtuo, Xu Zhengguo. CONDITION MONITORING OF WIND TURBINE PITCH SYSTEM USING DATA-DRIVEN APPROACH[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 409-417 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0816
中图分类号: TH17   

参考文献

[1] 金晓航, 孙毅, 单继宏, 等. 风电机组故障诊断与预测技术研究综述[J]. 仪器仪表学报, 2017(5): 1042-1053.
JIN X H, SUN Y, SHAN J H, et al. Fault diagnosis and prognosis for wind turbines: an overview[J]. Chinese journal of scientific instrument, 2017(5): 1042-1053.
[2] 张建付, 宋雨, 李刚, 等. 基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法[J]. 计算机测量与控制, 2017, 25(1): 16-19.
ZHANG J F, SONG Y, LI G, et al. A method of fault diagnosis for rolling bearing of wind turbines based on long short-term memory neural network[J]. Computer measurement & control, 2017, 25(1): 16-19.
[3] 刘辉海, 赵星宇, 赵洪山, 等. 基于深度自编码网络模型的风电机组齿轮箱故障检测[J]. 电工技术学报, 2017, 32(17): 156-163.
LIU H H, ZHAO X Y, ZHAO H S, et al. Fault detection of wind turbine gearbox based on deep autoencoder network[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 156-163.
[4] 杨志凌, 姚治业, 王瑞明.基于HMM的风电机组齿轮箱故障诊断研究[J]. 太阳能学报, 2017, 38(9): 2574-2581.
YANG Z L, YAO Z Y, WANG R M.Study on fault diagnosis of gearbox based on HMM[J]. Acta energiae solaris sinica, 2017, 38(9): 2574-2581.
[5] CHEN X J, YANG Y M, CUI Z X, et al. Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy[J]. Energy, 2019, 174: 1100-1109.
[6] 褚景春, 王飞, 汪杨, 等. 基于故障树和概率神经网络的风电机组故障诊断方法[J]. 太阳能学报, 2018, 39(10): 2901-2907.
CHU J C, WANG F, WANG Y, et al. Fault diagnosis method of wind turbine based on fault tree and probabilistic neural network[J]. Acta energiae solaris sinica, 2018, 39(10): 2901-2907.
[7] 叶杭冶.风力发电机组的控制技术[M]. 3版.北京: 机械工业出版社, 2015.
YE H Y.Control technology of wind turbines[M]. 3rd Edition.Beijing: China Machine Press, 2015.
[8] JIN X J, QIAO W, PENG Y Y, et al. Quantitative evaluation of wind turbine faults under variable operational conditions[J]. IEEE transactions on industry applications, 2016, 52(3): 2061-2069.
[9] JIN X J, XU Z W, QIAO W.Condition monitoring of wind turbine generators using SCADA data analysis[J]. IEEE transactions on sustainable energy, 2021, 12(1): 202-210.
[10] CONG Y, ZHENG Q, YAN P.Condition monitoring for wind turbine pitch system using multi-parameter health indicator[C]//2018 International Conference on Power system Technology(POWERCON), Guangzhou, China, 2018.
[11] 郭慧东, 王玮, 夏明超.基于数据挖掘的风电机组变桨系统劣化状态在线辨识方法[J]. 中国电机工程学报, 2016, 36(9): 2389-2397.
GUO H D, WANG W, XIA M C.On-line identification for wind turbine pitch system degradation based on data mining technology[J]. Proceedings of the CSEE, 2016, 36(9): 2389-2397.
[12] 高峰, 邓星星, 刘强, 等. 大型风电机组电动变桨系统变桨角度故障诊断[J]. 太阳能学报, 2020, 41(5): 98-106.
GAO F, DENG X X, LIU Q, et al. Fault diagnosis of electric pitch system for mw wind turbine[J]. Acta energiae solaris sinica, 2020, 41(5): 98-106.
[13] 王爽心, 郭婷婷, 李蒙.风电机组变工况变桨系统异常状态在线识别[J]. 中国电机工程学报, 2019, 39(17): 5144-5152, 5295.
WANG S X, GUO T T, LI M.On-line abnormal state identification of pitch system based on transitional mode for wind turbine[J]. Proceedings of the CSEE, 2019, 39(17): 5144-5152, 5295.
[14] 赵洪山, 张健平, 王桂兰, 等. 基于状态估计的风电机组液压变桨距系统故障检测[J]. 电力系统自动化, 2016, 40(22): 100-104, 124.
ZHAO H S, ZHANG J P, WANG G L, et al. State estimation based fault detection of hydraulic variable-pitch system for wind turbines[J]. Automation of electric power systems, 2016, 40(22): 100-104, 124.
[15] CHEN B, MATTHEWS P C, TAVNER P J.Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition[J]. IET renewable power generation, 2015, 9(5): 503-513.
[16] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer integrated manufacturing systems, 2019, 25(1): 1-18.
[17] 刘忠义, 刘崇茹, 李庚银.提高直驱永磁风机低电压穿越能力的功率协调控制方法[J]. 电力系统自动化, 2015, 39(3): 23-29.
LIU Z Y, LIU C R, LI G Y.Coordinated power control method for improving low voltage ride through capability of wind turbines with permanent magnet synchronous generators[J]. Automation of electric power systems, 2015, 39(3): 23-29.
[18] 金晓航, 王宇, BIN Z.工业大数据驱动的故障预测与健康管理[J/OL]. 计算机集成制造系统: 1-27[2020-08-31]. http://kns.cnki.net/kcms/detail/11.5946.TP.20200814.1703.006.html.
JIN X H, WANG Y, BIN Z.Industrial big data-driven fault prognostics and health management[J/OL]. Computer integrated manufacturing systems: 1-27[2020-08-31]. http://kns.cnki.net/kcms/detail/11.5946.TP.20200814.1703.006.html.
[19] MANEVITZ L M, YOUSEF M.One-class SVMs for document classification[J]. Journal of machine learning research, 2002, 2(1): 139-154.
[20] XIAO Y C, WANG H G, ZHANG L, et al. Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection[J]. Knowledge-based systems, 2014, 59(2): 75-84.

基金

国家重点研发计划(2022YFE0198900); 宁波市自然科学基金(2021J038); 工业控制技术国家重点实验室开放课题(ICT2021B43)

PDF(4043 KB)

Accesses

Citation

Detail

段落导航
相关文章

/