通过理论推导和数值模拟,从湍流模型封闭系数的确定过程、输运方程扩散项的影响因素、入口边界条件和网格尺度等方面分析标准k-ε模型、标准k-ω模型和SST k-ω湍流模型在计算均匀来流时湍流动能的衰减规律及其本质物理区别;通过数值模拟分析中性大气条件下湍流动能的衰减规律。结果表明,在均匀流中,采用标准k-ε湍流模型,入口湍流强度较小或湍流粘性比较大时,湍流动能衰减的程度及速率比采用标准k-ω模型和SST k-ω模型时小;在中性大气条件下,采用SST k-ω湍流模型,顶部边界采用压力出口时,风速、湍动能和比耗散率的廓线保持性较好。
Abstract
Through theoretical derivation and numerical simulation, the attenuation law of turbulence kinetic energy and the essential physical difference among the standard k-ω model, the standard k-ω model and the SST k-ω turbulence model are analyzed from the determination process of the closure coefficients of the turbulence model, the influencing factors of the diffusion term of the transport equation, the inlet boundary conditions, the grid size and so on, the attenuation law of turbulence kinetic energy under neutral atmospheric conditions is analyzed by numerical simulation. The results show that in uniform flow, when the standard k-ω turbulence model is used and the inlet turbulence intensity is relatively small or the eddy viscosity is relatively large, the attenuation of turbulence kinetic energy is higher than that of the standard k-ω model and the SST k-ω model, under neutral atmospheric conditions, when the SST k-ω turbulence model is used and the pressure outlet condition is used as the top boundary, the velocity, turbulent kinetic energy, and specific dissipation rate profiles are better maintained.
关键词
风力机 /
均匀流 /
湍流动能衰减 /
湍流模型 /
边界条件 /
数值模拟
Key words
wind turbines /
uniform flow /
turbulence kinetic energy attenuation /
turbulence model /
boundary condition /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HOYAS S, JIMÉNEZ J.Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003[J]. Physics of fluids, 2006, 18(1): 011702.
[2] SPALART P.Strategies for turbulence modelling and simulation[J]. International journal of heat and fluid flow, 2000, 21(3): 252-263.
[3] CHOW F K, WEIGEL A P, STREET R L, et al. High-resolution large-eddy simulations of flow in a steep alpine valley.Part I: methodology, verification and sensitivity experiments[J]. Journal of applied meteorology and climatology, 2006, 45(1): 63-86.
[4] CHURCHFIELD M J, LEE S, MICHALAKES J, et al. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J]. Journal of turbulence, 2012, 13(14): 1-32
[5] SCHULZ C, HOFSÄß M, ANGER J, et al. Comparison of different measurement techniques and a CFD simulation in complex terrain[C]//Science of Making Torque From Wind (TORQUE 2016), Munich, Germany, 2016.
[6] RODRIGUES C V, PALMA J L, RODRIGUES Á.Atmospheric flow over a mountainous region by a one-way coupled approach based on Reynolds-averaged turbulence modelling[J]. Boundary layer meteorology, 2016, 159(2): 407-437.
[7] KNAUS H, DÜRR B.Numerical simulation including model validation of wind flow in alpine terrain in eastern Switzerland[J]. Progress in computational fluid dynamics an international journal, 2015, 15(3): 168-176.
[8] KNAUS H, HOFSÄß M, RAUTENBERG A, et al. Application of different turbulence models simulating wind flow in complex terrain: a case study for the WindForS test site[J]. Computation, 2018, 6(3): 43.
[9] KASMI A E, MASSON C.An extended k-ε model for turbulent flow through horizontal-axis wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96(1): 103-122.
[10] ANTONINI E G A, ROMERO D A, AMON C H.Analysis and modifications of turbulence models for wind turbine wake simulations in atmospheric boundary layers[C]//ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016.
[11] 刘景源.SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201.
LIU J Y.Compressibility correction for the SST two-equation turbulence model in hypersonic flows[J]. Acta aeronautica ET astronautics sinica, 2012, 33(12): 2192-2201.
[12] 文晓庆, 柳阳威, 方乐, 等. 提高k-ω SST模型对翼型失速特性的模拟能力[J]. 北京航空航天大学学报, 2013, 39(8): 1127-1132.
WEN X Q, LIU Y W, FANG L, et al. Improving the capability of k-ω SST turbulence model for predicting stall characteristics of airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8): 1127-1132.
[13] 白俊强, 张扬, 徐晶磊, 等. 新型单方程湍流模型构造及其应用[J]. 航空学报, 2014, 35(7): 1804-1814.
BAI J Q, ZHANG Y, XU J L, et al. Construction and its application of a new one-equation turbulence model[J]. Journal of astronautics, 2014, 35(7): 1804-1814.
[14] KATUL G G, MAHRT L, POGGI D, et al. One and two-equation models for canopy turbulence[J]. Boundary layer meteorology, 2004, 113(1): 81-109.
[15] VAN DER LAAN M P, SØRENSEN N N, RÉTHORÉ P E, et al. Nonlinear eddy viscosity models applied to wind turbine wakes[C]//International Conference on Aerodynamics of offshore Wind Energy Systems and Wakes, Lyngby, Denmark, 2013: 514-525.
[16] HAN X S, SAGAUT P, LUCOR D.On sensitivity of RANS simulations to uncertain turbulent inflow conditions[J]. Computers and fluids, 2012, 61: 2-5.
[17] VEERABATHRASWAMY K, KUMAR A S.Effective boundary conditions and turbulence modeling for the analysis of steam turbine exhaust hood[J]. Applied thermal engineering, 2016, 103: 773-780.
[18] TIAN L L, ZHAO N, SONG Y L, et al. A comparative study of various inflow boundary conditions and turbulence models for wind turbine wake predictions[J]. Modern physics letters B condensed matter physics statistical physics applied physics, 2018, 32: 12-13.
[19] GOLDBERG U, PEROOMIAN O,CHAKRAVARTHY S, et al. Validation of CFD++ code capability for supersonic combuster flow fields[J]. Aiaa journal, 1997, 97: 3271.
[20] MENTER F R.Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605.
[21] SPALART P R, RUMSEY C L.Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA journal, 2007, 45(10): 2544-2553.
[22] 田琳琳.风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014.
TIAN L L.Numerical simulation of wind turbine wake and optimization of wind farm unit layout[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[23] LAUNDER B E, SPALDING D B.Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972: 358-426.
[24] RICHARDS P J, HOXEY R P.Appropiate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of wind engineering and industrial aerodynamics, 1993, 46-47: 145-153.
[25] WILCOX D C.Turbulence modeling for CFD[M]. California: DCW Industries, 1994: 107-230.
[26] MENTER F R.Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International journal of computational fluid dynamics, 2009, 23(4): 305-316.
[27] MENTER F R.Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605.
[28] WILCOX D C.Formulation of the k-ω turbulence modmod revisited[J]. AIAA journal, 2008, 46(11): 2823-2838.
[29] TOWNSEND A A.The structure of turbulent shear flow[M]. 2nd ed.Cambridge: Cambridge University Press, 1976: 105-126.
[30] POPE S B.Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 83-263.
[31] COUNIHAN J.Adiabatic atmospheric boundary layer: a review and analysis of data from the period 1880-1972[J]. Journal of photochemistry and photobiology B biology, 1975, 9(10): 871-905.
[32] PANOFSKY H A, DUTTON J A.Atmospheric turbulence[M]. New York: Wiley Interscience, 1984: 85-95.
[33] STULL R B.An introduction to boundary layer meteorolog[M]. Dordrecht: Kluwer Academic Publishers, 1988: 151-245.
[34] KLEBANOFF P S.Characteristics of turbulence in a boundary layer with zero pressure gradient[R]. NACA Report 1247, 1955.
[35] HAGEN L J, SKIDMORE E L, MILLER P L, et al. Simulation of effect of wind barriers on airflow[J]. ASAE paper, 1981, 24(4): 1002-1008.
[36] ESDU 85020-1985, Characteristics of atmospheric turbulence near the ground[S].
[37] BELJAARS A, WALMSLEY J L, TAYLOR P A.A mixed spectral finite difference model for neutrally stratified boundary layer flow over roughness changes and topography[J]. Boundary layer meteorology, 1987, 38(3): 273-303.
[38] BURTON T, SHARPE D, JENKINS N, et al. Wind energy handbook[M]. New York: Wiley, 2011: 9-36.
[39] EN 61400-1-2005, Wind turbines-part 1: design requirements[S].
基金
国家自然科学基金(51766009); 甘肃省陇原青年创新创业人才项目; 南京航空航天大学江苏省风力机设计高技术研究重点实验室开放课题; 西华大学流体及动力机械教育部重点实验室开放基金(Nos.szjj2019-027); 兰州理工大学红柳杰出青年人才资助计划