集群光伏电站一次调频参数经济优化设计方法

孙睿哲, 高丙团, 胡正阳, 陈宁

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 204-212.

PDF(2194 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2194 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 204-212. DOI: 10.19912/j.0254-0096.tynxb.2020-0831
电化学储能安全性与退役动力电池梯次利用关键技术专题

集群光伏电站一次调频参数经济优化设计方法

  • 孙睿哲1, 高丙团1, 胡正阳1, 陈宁2
作者信息 +

ECONOMIC OPTIMIZATION DESIGN METHOD OF PRIMARY FREQUENCY REGULATION PARAMETERS OF CLUSTER PHOTOVOLTAIC POWER STATIONS

  • Sun Ruizhe1, Gao Bingtuan1, Hu Zhengyang1, Chen Ning2
Author information +
文章历史 +

摘要

针对集群光伏电站参与电网一次调频,提出一种可实现光伏电站经济性最优的一次调频下垂参数优化设计方法。通过模拟同步发电机一次调频的下垂控制,设计考虑减载率与左右下垂系数3个参数的光伏集群参与一次调频的控制方案。在建立单一光伏电站调频参数优化模型的基础上,通过K均值聚类实现光伏集群规模化一次调频参数的降维优化设计。最后,以5 MW光伏电站群参与一次调频为例进行仿真分析。结果表明,该参数经济优化设计方法能在保证光伏电站调频运行稳定性下极大的提升运行经济性。

Abstract

This paper proposes an optimization design method of the primary frequency regulation droop parameters that can realize the optimal economic efficiency of photovoltaic power stations for cluster photovoltaic power stations participating in the primary frequency regulation of the power grid. By simulating the droop control of the primary frequency modulation of the synchronous generator, a control scheme is designed to take into account the three parameters of the load shedding rate and the left and right droop coefficients to participate in the primary frequency modulation. Based on the establishment of a single photovoltaic power plant frequency regulation parameter optimization model, K-means clustering is used to realize the dimension reduction optimization design of the primary frequency regulation parameters of the photovoltaic cluster. Finally, a simulation analysis is carried out by taking a 5 MW photovoltaic power plant group participating in a frequency regulation as an example. The results show that the parameter economic optimization design method can greatly improve the operating economy while ensuring the stability of the photovoltaic power station frequency regulation operation.

关键词

光伏电站 / 频率控制 / 优化 / K均值聚类 / 下垂控制

Key words

photovoltaic power stations / frequency control / optimization / K-means clustering / droop control

引用本文

导出引用
孙睿哲, 高丙团, 胡正阳, 陈宁. 集群光伏电站一次调频参数经济优化设计方法[J]. 太阳能学报. 2022, 43(4): 204-212 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0831
Sun Ruizhe, Gao Bingtuan, Hu Zhengyang, Chen Ning. ECONOMIC OPTIMIZATION DESIGN METHOD OF PRIMARY FREQUENCY REGULATION PARAMETERS OF CLUSTER PHOTOVOLTAIC POWER STATIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 204-212 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0831
中图分类号: TM615   

参考文献

[1] 国家能源局.挖掘风光电力更大潜能[EB/OL]. http://www.nea.gov.cn/2021-10/29/c_1310277274.htm.
National Energy Administration.Tap the greater potential of wind power[EB/OL]. http://www.nea.gov.cn/2021-10/29/c_1310277274.htm.
[2] 丁明, 胡迪, 毕锐, 等. 含高渗透率可再生能源的配电网可靠性分析[J]. 太阳能学报, 2020, 41(2): 194-202.
DING M, HU D, BI R, et al. Reliability analysis of distribution network with high penetration rate of renewable energy[J]. Acta energiae solaris sinica, 2020, 41(2): 194-202.
[3] 刘洋, 邵广惠, 张弘鹏, 等. 新能源参与系统一次调频分析及参数设置[J]. 电网技术, 2020, 44(2): 683-689.
LIU Y, SHAO G H, ZHANG H P, et al. Primary frequency modulation analysis and parameter setting of new energy participation system[J]. Power system technology, 2020, 44(2): 683-689.
[4] 孙骁强, 刘鑫, 程松, 等. 光伏逆变器参与西北送端大电网快速频率响应能力实测分析[J]. 电网技术, 2017, 41(9): 56-62.
SUN X Q, LIU X, CHENG S, et al. Measured analysis of photovoltaic inverter participating in rapid frequency response capability of large-scale transmission network in northwest China[J]. Power system technology, 2017, 41(9): 56-62.
[5] 孙骁强, 刘鑫, 程林, 等. 基于多调频资源协调控制的西北送端大电网新能源快速频率响应参数设置方案[J]. 电网技术, 2019, 43(5): 1760-1765.
SUN X Q, LIU X, CHENG L, et al. A new energy fast frequency response parameter setting scheme based on coordinated control of multi frequency modulation resources in Northwest Power Grid[J]. Power system technology, 2019, 43(5): 1760-1765.
[6] 王淑超, 孙光辉, 俞诚生, 等. 光伏发电系统级快速功率调控技术及其应用[J]. 中国电机工程学报, 2018, 38(21): 6254-6263.
WANG S C, SUN G H, YU C S, et al. Photovoltaic power generation system-level fast power control technology and its application[J]. Proceedings of the CSEE, 2018, 38(21): 6254-6263.
[7] 郑超, 王士元, 张波琦, 等. 光伏高渗透电网动态频率特性及应对措施[J]. 电网技术, 2019, 38(1): 1-10.
ZHENG C, WANG S Y, ZHANG B Q, et al. Dynamic frequency characteristics and countermeasures of photovoltaic high permeability grid[J]. Power system technology, 2019, 38(1): 1-10.
[8] 陈文倩, 辛小南, 程志平.基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33(S2): 538-545.
CHEN W Q, XIN X N, CHENG Z P.Control technology of grid connected generation with optical storage based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 538-545.
[9] 孙孝峰, 李钦钦.多机下垂系统并联运行稳定性研究[J]. 太阳能学报, 2017, 38(4): 1013-1023.
SUN X F, LI Q Q.Research on parallel operation stability of multi-machine droop system[J]. Acta energiae solaris sinica, 2017, 38(4): 1013-1023.
[10] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 231-238.
ZHANG G F, YANG J Y, SUN F, et al. Primary frequency modulation strategy of doubly-fed wind turbine based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 231-238.
[11] 孙铭爽, 贾祺, 张善峰, 等. 面向机电暂态分析的光伏发电参与电网频率调节控制策略[J]. 电力系统保护与控制, 2019, 47(18): 28-37.
SUN M S, JIA Q, ZHANG S F, et al. Control strategy of photovoltaic power generation participating in grid frequency regulation for electromechanical transient analysis[J]. Power system protection and control, 2019, 47(18): 28-37.
[12] 李媛, 张志强, 郑超, 等. 考虑光伏电站高渗透接入的火电机组一次调频参数优化[J]. 电力建设, 2017, 38(3): 115-122.
LI Y, ZHANG Z Q, ZHENG C, et al. Optimization of primary frequency modulation parameters of thermal power units considering high permeability access of photovoltaic power plants[J]. Electric power construction, 2017, 38(3): 115-122.
[13] 赵大伟, 马进, 钱敏慧, 等. 光伏电站参与大电网一次调频的控制增益研究[J]. 电网技术, 2019, 43(2): 425-435.
ZHAO D W, MA J, QIAN M H, et al. Study on the control gain of photovoltaic power station participating in the primary frequency modulation of large power grid[J]. Power system technology, 2019, 43(2): 425-435.
[14] JOHNSON J, NEELY J C, DELHOTAL J J, et al. Photovoltaic frequency-watt curve design for frequency regulation and fast contingency reserves[J]. IEEE journal of photovoltaics, 2016, 6(6): 1611-1618.
[15] 钟诚, 周顺康, 严干贵.基于自适应系数风电场一次频率控制策略研究[J]. 太阳能学报, 2018, 39(10): 2908-2917.
ZHONG C, ZHOU S K, YAN G G.Study on primary frequency control strategy of wind farm based on adaptive coefficient[J]. Acta energiae solaris sinica, 2018, 39(10): 2908-2917.
[16] 麻常辉, 潘志远, 刘超男, 等. 基于自适应下垂控制的风光储微网调频研究[J]. 电力系统保护与控制, 2015, 43(23): 22-27.
MA C H, PAN Z Y, LIU C N, et al. Study on frequency modulation of wind and light storage microgrid based on adaptive droop control[J]. Power system protection and control, 2015, 43(23): 22-27.
[17] 国家能源局南方监管局.广东调频辅助服务市场交易规则(试行)[EB/OL]. http://nfj.nea.gov.cn/adminContent/initViewContent.do? pk=402881e564f399bb01651c8a97dd 0024.
Southern Regulatory Bureau of the National Energy Administration.Trading rules of Guangdong FM auxiliary service market[EB/OL]. http://nfj.nea.gov.cn/adminContent/initViewContent.do?pk=402881e564f399bb01651c8a97dd 0024.
[18] MENG X, LIU J, LIU Z.A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control[J]. IEEE transactions on power electronics, 2019, 34(6): 5416-5438.
[19] 胡寿松.自动控制原理[M]. 北京: 科学出版社, 2013.
HU S S.Principles of automatic control[M]. Beijing:Science Press, 2013.
[20] DL/T 1870—2018, 电力系统网源协调技术规范[S]L/T 1870—2018, 电力系统网源协调技术规范[S]. 北京: 中国电力出版社, 2018.
DL/T 1870—2018, Power system network source coordination technical specification[S]L/T 1870—2018, Power system network source coordination technical specification[S]. Beijing: China Electric Power Press, 2018.
[21] JAIN A K.Data Clustering: 50 Years beyond K-means[J]. Pattern recognition letters, 2010, 31(8): 651-666.
[22] 张健, 李文锋, 王晖, 等. 多电源梯级调频方案及风电场级调频时序优化策略[J]. 电力系统自动化, 2019, 43(15): 93-100.
ZHANG J, LI W F, WANG H, et al. Multi-power cascade frequency modulation scheme and wind farm-level frequency modulation timing optimization strategy[J]. Automation of electric power systems.2019, 43(15): 93-100.
[23] 姚骏, 杜红彪, 周特, 等. 微网逆变器并联运行的改进下垂控制策略[J]. 电网技术, 2015, 39(4): 932-938.
YAO J, DU H B, ZHOU T, et al. Improved droop control strategy for inverters parallel operation in micro-grid[J]. Power system technology, 2015, 39(4): 932-938.

基金

国家自然科学基金(51741709)

PDF(2194 KB)

Accesses

Citation

Detail

段落导航
相关文章

/