碱改性HZSM-5热解生物质模型化合物影响研究

李延吉, 伊嘉婧, 何强, 杨振涛

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 383-390.

PDF(1888 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1888 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 383-390. DOI: 10.19912/j.0254-0096.tynxb.2020-0835

碱改性HZSM-5热解生物质模型化合物影响研究

  • 李延吉, 伊嘉婧, 何强, 杨振涛
作者信息 +

EFFECT OF ALKALI-MODIFIED HZSM-5 MODIFIED ON CATALYTIC PYROLYSIS OF BIOMASS MODEL COMPOUNDS

  • Li Yanji, Yi Jiajing, He Qiang, Yang Zhentao
Author information +
文章历史 +

摘要

实验采用Py-GC/MS在500 ℃下对NaOH、Na2CO3和有机碱(CTAB/TPAOH)改性HZSM-5催化热解生物质模型化合物的产物分布影响机制进行探究。结果表明,利用0.1 mol/L NaOH/Na2CO3改性HZSM-5使热解油中小分子酮、酚和酯类物质的收率有所提高,有利于碳链长度≥5产物(C≥5)的生成;0.2 mol/L NaOH/Na2CO3改性HZSM-5催化剂有助于脱羰和脱羟基反应的进行,促使环状化合物开裂转化为链状化合物。TPAOH的加入使NaOH改性HZSM-5催化热解产物中酮类产物收率降至18.56%、醛类产物收率增至3.01%,并促使C≥9产物向C≤4转化,链状产物增加;经CTAB改性后C≥9产物向C5-8转化,环状产物增加。

Abstract

In this experiment, Py-GC/MS was used to investigate the influence mechanism of product distribution of biomass model compounds in catalytic pyrolysis of HZSM-5 modified by NaOH、Na2CO3 and CTAB/TPAOH at 500 ℃. The results showed that the yield of small-molecular ketones, phenols and esters in the products was increased in catalytic pyrolysis over HZSM-5 modified by 0.1 mol/L NaOH/Na2CO3, and the formation of C≥5 hydrocarbon was enhanced. 0.2 mol/L NaOH/Na2CO3 modification HZSM-5 catalyst facilitates decarbonylation and dehydroxylation, and promotes the cracking of cyclic compounds into chain compounds. The yield of ketones in the products decreased to 18.56% and that of aldehydes increased to 3.01% in pyrolysis over HZSM-5 co-modified by utilization of TPAOH and NaOH. Meanwhile, the yield of C≥9 hydrocarbon decreased in the catalytic pyrolysis, which was due to that C≥9 hydrocarbon converted to C≤4 hydrocarbon, and the yield of chain hydrocarbons increased. C≥9 hydrocarbon in the products converted to C5-8 hydrocarbon in the pyrolysis over HZSM-5 co-modified by CTAB and NaOH, and the yield of cyclic hydrocarbon increased in this process.

关键词

生物质能 / 催化热解 / 碱改性 / HZSM-5

Key words

biomass energy / catalytic pyrolysis / alkali modification / HZSM-5

引用本文

导出引用
李延吉, 伊嘉婧, 何强, 杨振涛. 碱改性HZSM-5热解生物质模型化合物影响研究[J]. 太阳能学报. 2022, 43(5): 383-390 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0835
Li Yanji, Yi Jiajing, He Qiang, Yang Zhentao. EFFECT OF ALKALI-MODIFIED HZSM-5 MODIFIED ON CATALYTIC PYROLYSIS OF BIOMASS MODEL COMPOUNDS[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 383-390 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0835
中图分类号: S216.2   

参考文献

[1] CABALLERO J A, ESPERANAZA M M, FULLANA A.Pyrolytic products from tannery wastes[J]. Journal of analytical & applied pyrolysis, 1999, 49(1): 243-256.
[2] ODDEN W, BARTH T.A study of the composition of light hydrocarbons (C5-C13) from pyrolysis of source rock samples[J]. Organic geochemistry, 2000, 31(2-3): 211-229.
[3] FAN Y Y, ZHANG D Y, ZHENG A Q, et al.Selective production of anhydrosugars and furfural from fast pyrolysis of corncobs using sulfuric acid as an inhibitor and catalyst[J]. Chemical engineering journal, 2018, 358: 743-751.
[4] JAE J, MOUNTZIANIS T J, HUBER G, et al.Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal[J]. Chemical engineering science, 2014, 108: 33-46.
[5] SERAPIGLIA M J, MULLEN C A, SMART L B, et al.Variability in pyrolysis product yield from novel shrub willow genotypes[J]. Biomass and bioenergy, 2015, 72: 74-84.
[6] CARLSON T R, VISPUTE T P, HUBER G W.Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds[J]. Chemsuschem, 2008, 1(5): 397-400.
[7] HASSAN E B, ELSAYED I, ESEYIN A.Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene[J]. Fuel, 2016, 174: 317-324.
[8] LIU S Y, ZHANG Y N, FAN L L, et al.Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196: 261-268.
[9] BOTAS J A, SERRANO D P, GARCÍA A, et al. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catalysis today, 2012, 195(1): 59-70.
[10] RYU H W, TSANG Y F, LEE H W, et al.Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties[J]. Chemical engineering journal, 2019, 373: 375-381.
[11] DING K, ZHONG Z P, WANG J, et al.Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard[J]. Journal of analytical and applied pyrolysis, 2017, 125: 153-161.
[12] VESES A, PUÉRTOLAS B, LÓPEZ J M, et al. Promoting deoxygenation of bio-oil by metal-loaded hierarchical zsm-5 zeolites[J]. ACS sustainable chemistry & engineering, 2016, 4(3): 1653-1660.
[13] ZHANG H Y, LIKUN P K W, XIAO R, et al. Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout[J]. Science of the total environment, 2018, 618: 151-156.
[14] LIU C J, WANG H M, KARIM A M, et al.Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical society reviews, 2014, 43(22): 7594-7623.
[15] WANG J, ZHONG Z P, DING K, et al.Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics[J]. Energy conversion and management, 2017, 147: 100-107.
[16] CHEN H, CHENG H, ZHOU F, et al.Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification[J]. Journal of analytical and applied pyrolysis, 2018, 131: 76-84.
[17] TANG S S, ZHANG C S, XUE X F, et al.Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions[J]. Journal of analytical and applied pyrolysis, 2019, 137: 86-95.
[18] SADOWSKA K, WACH A, OLEJNICZAK Z, et al.Hierarchic zeolites: zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide[J]. Microporous and mesoporous materials, 2013, 167: 82-88.
[19] FATHI S, SOHRABI M, FALAMAKI C.Improvement of HZSM-5 performance by alkaline treatments: comparative catalytic study in the MTG reactions[J]. Fuel, 2014, 116: 529-537.
[20] XIN H C, LI X P, FANG Y, et al.Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites[J]. Journal of catalysis, 2014, 312(1): 204-15.
[21] ZHANG C, XING J, SONG L, et al.Aqueous-phase hydrodeoxygenation of lignin monomer eugenol: influence of Si/Al ratio of HZSM-5 on catalytic performances[J]. Catalysis today, 2014, 234(1): 145-152.
[22] 张鹏飞, 周勇, 孙进, 等. CTAB对介孔γ-Al2O3性质的影响[J]. 化工进展, 2014, 33(1): 194-201.
ZHANG P F, ZHOU Y, SUN J, et al.Effects of CTAB on the properties of mesoporous γ-Al2O3[J]. Chemical industry and engineering progress, 2014, 33(1): 194-201.
[23] WANG B R, LIN M, PENG X X, et al.Hierarchical TS-1 synthesized effectively by post-modification with TPAOH and ammonium hydroxide[J]. RSC advances, 2016, 6(51): 44963-44971.
[24] XUE Y, WEN Y Q, WEI H J, et al.Hollow TS-1 mesocrystals: hydrothermal construction and high catalytic performances in cyclohexanone ammoximation[J]. RSC advances, 2015, 5(64): 51563-51569.

基金

辽宁省自然科学基金(20180550324); 辽宁省教育厅项目(L201707)

PDF(1888 KB)

Accesses

Citation

Detail

段落导航
相关文章

/