以点吸收式波浪发电装置为例,考虑浮体和阻尼板在垂荡方向上的运动响应特性及磁流体发电机的发电特性,利用遗传算法优化不同规则波况下磁流体发电机的结构参数,得到装置投放于南海某岛屿附近时不同平均有效波高下的发电效率。然后,根据该岛屿全年波况的频率分布规律,计算得到全年发电量,年发电量最大时磁流体发电机结构参数最优。与传统按主波况进行结构参数优化相比,充分考虑不同平均有效波高的出现频率对装置输出功率的影响,对实海况条件下磁流体波浪发电装置的优化设计和经济效益的评估具有重要的指导意义。另外,磁流体波浪发电装置的启动波高低于1.0 m的行业标准,启动性能极好,可增加波浪的有效利用小时数,其极强的低海况响应能力尤其适合中国的低海况条件。
Abstract
Taking the point absorption wave power generation device as an example, considering the motion response characteristics of floating body and damping plate in the heave direction and the power generation characteristics of MHD generator, genetic algorithm is used to optimize the structural parameters of MHD generator under different regular wave conditions, and the power generation efficiency of the device under different average effective wave heights is obtained when the device is placed near an island in the South China Sea. Then, according to the frequency distribution law of the wave state of the island, the annual power generation is calculated. When the annual power generation is the largest, the structural parameters of the MHD generator are optimal. Compared with the traditional structural parameter optimization based on the main wave condition, the influence of the frequency of different average significant wave height on the output power of the device is fully considered. It has important guiding significance for the optimal design of MHD wave power generation device and the evaluation of economic benefits under real sea conditions. At the same time, the start-up wave height of MHD wave power generation device is lower than the industry standard of 1.0 m, and the start-up performance is excellent, which increases the effective utilization hours of waves, and its extremely strong low sea state response ability is especially suitable for China′s low sea conditions.
关键词
磁流体 /
波浪能 /
遗传算法 /
发电量 /
结构参数
Key words
magnetohydrodynamic /
wave power /
genetic algorithms /
power generation /
structural parameter
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王传崑.海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009.
WANG C K.Analysis methods and reserves assessment of marine energy resources[M]. Beijing: Ocean Publishing House, 2009.
[2] 国家海洋局第一海洋研究所.海洋可再生能源专项资金项目评估报告[R]. GHME2011ZC07, 2013.
First Institute of Oceanography, State Oceanic administration.Project evaluation report of marine renewable energy special fund[R]. GHME2011ZC07, 2013.
[3] ZHENG C W, PAN J, LI J X.Assessing the China sea wind energy and wave energy resources from 1988 to 2009[J]. Ocean engineering, 2013, 65(1): 39-48.
[4] 郑崇伟, 贾本凯, 郭随平, 等. 全球海域波浪能资源储量分析[J]. 资源科学, 2013, 35(8): 1611-1616.
ZHENG C W, JIA B K, GUO S P, et al. Analysis of wave energy resources in global seas[J]. Resource science, 2013, 35(8): 1611-1616.
[5] 郑崇伟, 郑宇燕, 陈洪春.基于SWAN模式的近10年南海北部波浪能资源研究[J]. 亚热带资源与环境学报, 2011, 6(2): 54-59.
ZHENG C W, ZHENG Y Y, CHEN H C.Study on wave energy resources in the north of the South China Sea based on SWAN model in recent 10 years[J]. Journal of subtropical resources and environment, 2011, 6(2): 54-59.
[6] 万勇.面向工程开发的波浪能评估模型及其在中国海的应用研究[D]. 青岛: 中国海洋大学, 2015.
WAN Y.Wave energy evaluation model for engineering development and its application in China Sea[D]. Qingdao: Ocean University of China, 2015.
[7] 孙龙龙.基于装置研发的波浪能评估方法研究[D]. 青岛: 中国海洋大学, 2012.
SUN L L.Study on wave energy evaluation method based on device development[D]. Qingdao: Ocean University of China, 2012.
[8] 王项南, 俞彦辉, 夏海南.波浪能发电装置功率特性现场测试分析方法研究[J]. 仪器仪表学报, 2019, 40(1): 70-76.
WANG X N, YU Y H, XIA H N.Research on field test and analysis method for power characteristics of wave energy power generation device[J]. Chinese journal of scientific instrument, 2019, 40(1): 70-76.
[9] 马哲.振荡浮子式波浪发电装置的水动力学特性研究[D]. 青岛: 中国海洋大学, 2013.
MA Z.Study on hydrodynamic characteristics of oscillating floating wave generator[D]. Qingdao: Ocean University of China, 2013.
[10] 张弘弨.海洋波浪发电系统振荡浮子结构的优化研究[D]. 北京: 清华大学, 2010.
ZHANG H Y.Optimization of oscillating float structure of ocean wave power generation system[D]. Beijing: Tsinghua University, 2010.
[11] 杨名.基于最优能量捕获的垂荡浮子式波浪发电装置研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
YANG M.Research on heave floater wave power generation device based on optimal energy capture[D]. Harbin: Harbin Engineering University, 2019.
[12] 姜元.点吸收式波浪发电系统结构优化及控制技术研究[D]. 广州: 华南理工大学, 2019.
JIANG Y.Research on structure optimization and control technology of point absorption wave power generation system[D]. Guangzhou: South China University of Technology, 2019.
[13] 马怀书, 于庆武.我国毗邻海区表面波浪能的初步估算[J]. 海洋通报, 1983, 2(3): 73-81.
MA H S, YU Q W.Preliminary estimation of surface wave energy of adjacent sea areas in China[J]. Ocean bulletin, 1983, 2(3): 73-81.
[14] 张松, 刘富铀, 张滨, 等. 我国近海波浪能资源调查与评估[J]. 海洋技术, 2012, 31()3: 79-81.
ZHANG S, LIU F Y, ZHANG B, et al. Investigation and assessment of wave energy resources in China’s offshore waters[J]. Marine technology, 2012, 31()3: 79-81.
[15] FALCAO, ANTONIO F, DE O.Wave energy utilization: A review of the technologies[J]. Renewable and sustainable energy reviews, 2010, 14: 899-918.
[16] LIU B L, LI J, PENG Y, et al. Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of ocean and wind energy, 2015, 2(1): 21-27.
[17] 王树玉.海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013.
WANG S Y.Wave mechanics of ocean engineering[M]. Qingdao: China Ocean University Press, 2013.
[18] 周恒.双浮体波浪能发电装置及其阵列的水动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
ZHOU H.Study on hydrodynamic characteristics of double floating body wave energy generator and its array[D]. Harbin: Harbin Engineering University, 2017.
[19] 刘艳娇.点吸收式液态金属磁流体波浪发电系统性能特性研究[D]. 北京: 中国科学院大学, 2017.
LIU Y J.Performance characteristics of point absorption liquid metal magnetohydrodynamic wave power generation system[D]. Beijing: University of Chinese Academy of Sciences, 2017.
[20] 盛松伟, 游亚戈, 张亚群.一种点吸收式波浪能装置水动力学研究[J]. 太阳能学报, 2013, 34(8): 1443-1449.
SHENG S W, YOU Y G, ZHANG Y Q.Hydrodynamic study of a point-absorbing wave energy device[J]. Acta energiae solaris sinica, 2013, 34(8): 1443-1449.
[21] PECHER A, KOFOED J P.Handbook of ocean wave energy[M]. Berlin: Springer, 2018.
[22] 居滋象.开环磁流体发电[M]. 北京: 北京工业大学出版社, 1998.
JU Z X.Open-loop magnetohydrodynamic power generation[M]. Beijing: Beijing University of Technology Press, 1998.
[23] HAGERMAN G.Guidelines for preliIllinary estimtion of production by offshore wave energy devices[R]. EPRlWP-00.
[24] 郑崇伟, 周林.近10年南海波候特征分析及波浪能研究[J]. 太阳能学报, 2012, 33(8): 1349-1356.
ZHENG C W, ZHOU L.Wave climate and wave energy analysis of the South China Sea in recent 10 years[J]. Acta energiae solaris sinica, 2012, 33(8): 1349-1356.
[25] KARAKASIS M K, KOUBOGIANNIS D G, GIANNAKOGLOU K C.Hierarchical distributed metamodel-assisted evolutionary algorithms in shape optimization[J]. International journal for numerical methods in fluids, 2007, 53(3): 455-469.
[26] KRISHNAKUMAR K.Microgenetic algorithms for stationary and non-stationary function optimization[C]//Proceedings of the 1989 SPIE Conference on Intelligent Control and Adaptive Systems, Philadelphia, USA, 1989: 289-296.
基金
国家海洋可再生能源资金项目(GHME2018SF02)