针对太阳电池组串热斑效应,研究太阳电池组串热斑的防治策略。首先从防治成本、功率损耗、热斑温度和组串输出功率4个技术指标总结和对比了现有太阳电池组串热斑防治策略,给出了热斑防治的评估方法。然后,提出一种串入电阻的太阳电池组串热斑防治策略。该策略利用串入的电阻分担热斑电池承受的反向电压,降低了热斑电池功率损耗和温度。设计了由电压比较器、功率MOS管、三极管、分压电阻等组成的防治电路,并给出防治电路的防治原理。最后,通过仿真与实验,验证文中防治策略的效果。与传统的解决方案对比分析表明,该文所提热斑防治策略,具有热斑电池温度低、太阳电池组串输出功率大的优点。
Abstract
Aiming at the hot spot effect of PV(photovoltaic) series, this paper studies the suppressing strategies of hot spot of PV series. Firstly, the existing hot spot suppressing strategies of PV series are summarized and compared from the aspects of suppressing cost, power loss, hot spot temperature and output power, and an evaluation method of hot spot suppressing strategies is given. Then, a new hot spot suppressing strategy is proposed by using serial resistance. The designed circuit of the proposed strategy consists of voltage comparator, MOSFET, triode, voltage divider, and the principle are analyzed. Finally, the effectiveness of the suppressing strategy is verified by simulation and experiment. Comparing with the traditional solutions, the proposed hot spot suppressing strategy has the advantages of low temperature and large output power of hot spot cells.
关键词
太阳电池 /
温度 /
电压控制 /
热斑控制 /
功率损耗
Key words
solar cells /
temperature /
voltage control /
hot spot control /
power loss
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王培珍, 郑诗程.基于红外图像的太阳能光伏阵列故障分析[J]. 太阳能学报, 2010, 31(2): 197-202.
WANG P Z, ZHENG S C.Fault analysis of photovoltaic array based on infrared image[J]. Acta energiae solaris sinica, 2010, 31(2): 197-202.
[2] 唐圣学, 张启然, 刘雅敬, 等. 太阳电池动态模型仿真分析及实验研究[J]. 太阳能学报, 2019, 40(9): 2536-2546.
TANG S X, ZHANG Q R, LIU Y J, et al. Simulation and experimental study on dynamic model of photovoltaic cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2536-2546.
[3] 邬明亮, 戴朝华, 邓惠文, 等. 基于单体光伏/单体储能电池模组的新型光伏储能发电系统[J]. 电力系统保护与控制, 2017, 45(3): 56-61.
WU M L, DAI C H, DENG H W, et al. A novel PV energy storage generating system based on single PV cell/single energy storage cell module[J]. Power system protection and control, 2017, 45(3): 56-61.
[4] 杨瑞珍, 杜博伦, 何赟泽, 等. 晶体硅太阳电池电磁感应激励红外热辐射缺陷检测与成像技术[J]. 电工技术学报, 2018, 33(2): 321-330.
YANG R Z, DU B L, HE Y Z, et al. Infrared radiation defect detection and imaging technique under active electromagnetic induction excitation for crystalline silicon photovoltaic cells[J]. Transactions of China Elereotechnical Society, 2018, 33(2): 321-330.
[5] 肖景良, 徐政, 林崇, 等. 局部阴影条件下光伏阵列的优化设计[J]. 中国电机工程学报, 2009, 29(11): 119-124.
XIAO J L, XU Z, LIN C, et al. Optimal design of photovoltaic arrays under partial shading[J]. Proceedings of the CSEE, 2009, 29(11): 119-124.
[6] 夏永洪, 李梦茹, 曾繁鹏, 等. 基于TCT结构及开关控制的光伏阵列重构[J]. 太阳能学报, 2018, 39(10): 2797-2802.
XIA Y H, LI M R, ZENG F P, et al. Reconstruction of PV arrays based on TCT stucture and switch control[J]. Acta energiae solaris sinica, 2018, 39(10): 2797-2802.
[7] 李志刚, 田盛.局部阴影下光伏阵列结构优化[J]. 太阳能学报, 2016, 37(12): 2999-3004.
LI Z G, TIAN S.Structure optimazation of PV array under partial shade[J]. Acta energiae solaris sinica, 2016, 37(12): 2999-3004.
[8] 丁明, 陈中.遮阴影响下的光伏阵列结构研究[J]. 电力自动化设备, 2011, 31(10): 1-5.
DING M, CHEN Z.Reconfiguration of partially shaded photovoltaic array[J]. Electric power automation equipment, 2011, 31(10): 1-5.
[9] 伊纪禄, 刘文祥, 马洪斌, 等. 太阳电池热斑现象和成因的分析[J]. 电源技术, 2012, 36(6): 816-818.
YI J L, LIU W X, MA H B, et al. Solar hot spot phenomenon and its analysis[J]. Chinese journal of power sources, 2012, 36(6): 816-818.
[10] BAUWENS P, DOUTRELOIGNE J.Reducing partial shading power loss with an integrated smart bypass[J]. Solar energy, 2014, 103: 134-142.
[11] DALIENTO S, DI N F, GURRIERO P, et al. A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading[J]. Solar energy, 2016, 134: 211-218.
[12] DHIMISH M, HOLMES V, MATHER P, et al. Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance[J]. Solar energy materials and solar cells, 2018, 179: 72-79.
[13] D’ALESSANDRO V, GUERRIERO P, DALIENTO S.A simple bipolar transistor-based bypass approach for photovoltaic modules[J]. IEEE journal of photovoltaics, 2014, 4(1): 405-413.
[14] GUERRIERO P, DALIENTO S.Toward a hot spot free PV module[J]. IEEE journal of photovoltaics, 2019, 9(3): 796-802.
[15] NIAZI K, KHAN H A, AMIR F.Hot-spot reduction and shade loss minimization in crystalline-silicon solar panels[J]. Journal of renewable and sustainable energy, 2018, 10(3): 033506-1-033506-8.
[16] KIM K A, KREIN P T.Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode[J]. IEEE journal of photovoltaics, 2015, 5(5): 1435-1441.
[17] 王秀云, 王见, 田壁源, 等. 基于智能旁路二极管对遮阴影响下的太阳能模组优化设计[J]. 电力系统保护与控制, 2018, 509(11): 73-80.
WANG X Y, WANG J, TIAN B Y, et al. Optimization design of solar module based on intelligent bypass diode under shadow effect[J]. Power system protection and control, 2018, 509(11): 73-80.
[18] 李松丽, 张俊.光伏组件旁路二极管结温测试[J]. 太阳能学报, 2015, 36(1): 133-137.
LI S L, ZHANG J.Junction temperature inspection of bypass diode in PV module[J]. Acta energiae solaris sinica, 2015, 36(1): 133-137.
[19] GAO C, LIANG P, REN H, et al. Experimental research on the relationship between bypass diode configuration of photovoltaic module and hot spot generation[J]. Journal of semiconductors, 2018, 39(12): 141-146.
[20] ITAKO K, IIDUKA N, KUDOH T, et al. Proposition of novel real time hot-spot detection method for PV generation system[C]//IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 2017: 99-102.
[21] 吴达成.我国光伏组件封装设备制造现状及展望[J]. 太阳能, 2012(8): 45-46.
WU D C.Current situation and prospect of pv module packaging equipment manufacturing in China[J]. Solar energy, 2012(8): 45-46.
基金
河北省自然科学基金面上项目(E2021202068; E2019202481)