四角架筒型基础气浮过程中运动特性研究

刘宪庆, 赵明阶, 张浦阳, 罗盛, 钟韡

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 428-433.

PDF(2132 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2132 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 428-433. DOI: 10.19912/j.0254-0096.tynxb.2020-0855
电化学储能安全性与退役动力电池梯次利用关键技术专题

四角架筒型基础气浮过程中运动特性研究

  • 刘宪庆1, 赵明阶1, 张浦阳2, 罗盛3, 钟韡3
作者信息 +

STUDY ON MOTION CHARACTERISTICS OF TETRAPOD BUCKET FOUNDATION DURING AIR-FLOATING

  • Liu Xianqing1, Zhao Mingjie1, Zhang Puyang2, Luo Sheng3, Zhong Wei3
Author information +
文章历史 +

摘要

以四角架筒型基础为研究对象,通过在静水及规则波作用下的模型试验对影响结构气浮过程中运动特性的因素进行分析。结果表明,结构摇荡运动的附加质量系数随吃水的增加呈下降趋势,都大于船舶动力学的建议值1.2;随着吃水的增加,垂荡运动呈先减小后增大的趋势,而纵摇运动呈减小的趋势;较浅水深增强了结构的竖向运动,垂荡和纵摇运动的最大幅值随水深的变化呈相反的变化趋势;四角架筒型基础结构在4.5 m吃水和12.5 m水深下的运动响应特性最佳。

Abstract

Taking a tetrapod bucket foundation as the research object, the factors influencing the motion characteristics of the structure during air-floating are investigated by model tests in still water and regular waves. The results indicate that the added mass coefficient of oscillating motion decreases with the increase of draft, which is greater than the recommended value 1.2 in ship dynamics. As the draft increases, the heaving motion first decreases and then increases, while the pitching motion decreases. The vertical motions of the structure are enhanced in shallower water. However, the change trend of maximum amplitude of heaving motion is opposite to that of pitching motion with the change of water depth. The optimal motion responses of the structure are achieved at 4.5 m draft and 12.5 m water depth.

关键词

海上风力机 / 传递函数 / 流体结构相互作用 / 筒型基础 / 附加质量

Key words

offshore wind turbines / transfer function / fluid structure interaction / bucket foundation / added mass

引用本文

导出引用
刘宪庆, 赵明阶, 张浦阳, 罗盛, 钟韡. 四角架筒型基础气浮过程中运动特性研究[J]. 太阳能学报. 2022, 43(4): 428-433 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0855
Liu Xianqing, Zhao Mingjie, Zhang Puyang, Luo Sheng, Zhong Wei. STUDY ON MOTION CHARACTERISTICS OF TETRAPOD BUCKET FOUNDATION DURING AIR-FLOATING[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 428-433 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0855
中图分类号: P752    TV321   

参考文献

[1] BYRNE B W, HOULSBY G T, MARTIN C, et al. Suction caisson foundations for offshore wind turbines[J]. Wind energy, 2002, 26(3): 145-155.
[2] HOULSBY G T, IBSEN L B, BYRNE B W.Suction caissons for wind turbines[C]//Frontiers in Offshore Geotechnics: ISFOG, Perth, WA, Australia, 2005: 75-93.
[3] IBSEN L B.The bucket foundation and its competitiveness versus monopiles and jacket structures[C]//The International Conference in Research at Alpha Ventus(RAVE-International Conference), Bremerhaven, Germany, 2012.
[4] FU D F, BIENEN B, GAUDIN C, et al. Undrained capacity of a hybrid subsea skirted mat with caissons under combined loading[J]. Canadian geotechnical journal, 2014, 51(8): 934-949.
[5] DING H Y, LIU Y G, ZHANG P Y, et al. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean engineering, 2015, 103: 114-122.
[6] 张浦阳, 黄宣旭.海上风电吸力式筒型基础应用研究[J]. 南方能源建设, 2018, 5(4): 1-11.ZHANG P Y, HUANG X X.Application research on suction bucket foundation for offshore wind power[J]. South energy construction, 2018, 5(4): 1-11.
[7] 刘爱永.可解脱吸力锚基础浮拖方案[J]. 中国造船, 2012, 53(A02): 28-35.LIU A Y.Methods of towing releasable suction pile foundation in floating state[J]. Shipbuilding of China, 2012, 53(A02): 28-35.
[8] ZHANG P Y, HAN Y Q, DING H Y, et al. Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines[J]. Ocean engineering, 2015, 108: 769-777.
[9] 别社安, 时忠民, 王翎羽.气浮结构的运动特性研究[J]. 中国港湾建设, 2001(2): 18-21.BIE S A, SHI Z M, WANG L Y.Study on kinetic properties of the air floated structures[J]. China harbour engineering, 2001(2): 18-21.
[10] SEIDL L H.Development of ASP(air stabilized platform)[R/OL]. https://ui.adsabs.harvard.edu.University of Hawaii, Department of Ocean Engineering technical report submitted to US Department of Commerce, Maritime Administration, 1980.
[11] CHEUNG K, PHADKE A, SMITH D, et al. Hydrodynamic response of a pneumatic floating platform[J]. Ocean engineering, 2000, 27(12): 1407-1440.
[12] 姜大宁.钢筒组块的静稳性和波浪中的运动响应[D]. 天津: 天津大学, 2005.JIANG D N.Static stability and motion response of steel cylinders block in the wave[D]. Tianjin: Tianjin University, 2005.
[13] PINKSTER J A, FAUZI A, INOUE Y, et al. The behaviour of large air cushion supported structures in waves[C]//Proceedings of Second International Conference Hydro-elasticity in Marine Technology, Fukuoka, Japan, 1998: 497-509.
[14] VAN KESSEL J L F.Aircushion supported mega-floaters [D]. Delft: Delft University of Technology, 2010.
[15] THIAGARAJAN K P.Hydrostatic stability of compartmented structures supported by air cushions[J]. Journal of ship research, 2009, 53(3): 151-158.
[16] BIE S A, JI C N, REN Z J, et al. Study on floating properties and stability of air floated structures[J]. China ocean engineering, 2002, 16: 263-272.
[17] 张积乐.人工岛基础气浮拖航运动性能试验研究[D]. 天津: 天津大学, 2011.ZHANG J L.An experimental study on the motion performances of air supported artificial island foundation during floating towing[D]. Tianjin: Tianjin University, 2011.
[18] 栾文辉.筒型基础平台气浮拖航研究[D]. 天津: 天津大学, 2005.LUAN W H.The study on towing by air floating of bucket foundation platform[D]. Tianjin: Tianjin University, 2005.
[19] 付海峰.大直径圆筒结构充气浮运的浮态特性分析和试验研究[D]. 天津: 天津大学, 2001.FU H F.Air floating state and propertied analysis of the large-diameter cylinder shell structures[D]. Tianjin: Tianjin University, 2001.
[20] 刘建辉.筒型基础海洋平台气浮拖航性能研究[D]. 天津: 天津大学, 2008.LIU J H.Investigation on towing behaviour of bucket foundation ocean platform with air cushion[D]. Tianjin: Tianjin University, 2008.
[21] 刘宪庆.气浮筒型基础拖航稳性和动力响应研究[D]. 天津: 天津大学, 2012.LIU X Q.Study on stability and dynamic response for towing of air-floating bucket foundation[D]. Tianjin: Tianjin University, 2012.
[22] 张学栋.一种气垫式风机支撑平台的绕射及垂荡动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.ZHANG X D.The analysis of diffraction and heave dynamic performance for a floating wind turbine platform supported by aircushion[D]. Harbin: Harbin Engineering University, 2018.
[23] LEE C H, NEWMAN J N.An extended boundary integral equation for structures with oscillatory free-surface pressure[J]. International journal of offshore and polar engineering, 2016, 26(1): 41-47.
[24] LIU X Q, ZHANG P Y, ZHAO M J, et al. Air-floating characteristics of large-diameter multi-bucket foundation for offshore wind turbines[J]. Energies, 2019, 12(21):4108.
[25] LIU X Q, ZHANG P Y, ZHAO M J, et al. Influencing factors of motion responses for large-diameter tripod bucket foundation[J]. Applied sciences, 2019, 9(22): 4957.
[26] 刘宪庆, 赵明阶, 乐丛欢, 等. 大直径多筒型基础的运动特性分析[J]. 船海工程, 2020, 49(1): 124-129.LIU X Q, ZHAO M J, LE C H, et al. Analysis of motion characteristics of multi-bucket foundations with large diameter[J]. Ship and ocean engineering, 2020, 49(1): 124-129.
[27] 刘应中.船舶兴波阻力理论[M]. 北京: 国防工业出版社, 2003.LIU Y Z.Theory of ship wave making resistance[M]. Beijing: National Defense Industry Press, 2003.

基金

国家重点研发计划(2018YFC0810402); 重庆市自然科学基金(CSTC2016JCYJA0580); 国家自然科学基金(51679163); 重庆市博士后科研特别资助项目(XM2019); 重庆英才计划·创新创业示范团队(CQYC201903204)

PDF(2132 KB)

Accesses

Citation

Detail

段落导航
相关文章

/