基于XGBoost联合模型的光伏发电功率预测

王献志, 曾四鸣, 周雪青, 陈天英, 郭少飞, 张卫明

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 236-242.

PDF(1656 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1656 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 236-242. DOI: 10.19912/j.0254-0096.tynxb.2020-0890
电化学储能安全性与退役动力电池梯次利用关键技术专题

基于XGBoost联合模型的光伏发电功率预测

  • 王献志, 曾四鸣, 周雪青, 陈天英, 郭少飞, 张卫明
作者信息 +

POWER FORECAST OF PHOTOVOLTAIC GENERATION BASED ON XGBOOST COMBINED MODEL

  • Wang Xianzhi, Zeng Sining, Zhou Xueqing, Chen Tianying, Guo Shaofei, Zhang Weipeng
Author information +
文章历史 +

摘要

提出一种考虑时间序列和多特征的光伏发电功率XGBoost联合预测模型。首先,基于偏最小二乘(PLS)提取影响光伏发电功率的多特征;然后,基于XGBoost算法分别建立发电功率的时间序列预测单模型和多特征预测单模型;最后,通过训练线性模型构建了光伏发电功率联合预测模型。使用某地区光伏电厂运行数据验证,结果证明,所提XGBoost联合模型预测精度更高,泛化能力更强,并且对噪声数据具有较强的抵抗能力。

Abstract

This paper proposes a XGBoost combined model considering time series and multi-features for forecasting photovoltaic power. First, the multiple features is extracted that affect photovoltaic power based on partial least squares (PLS), then, the single PV power prediction models is established considering time series and multi-feature, respectively, based on XGBoost algorithm. Finally, the combined forecast model based on XGBoost is established through the training linear model parameters. The proposed XGBoost combined model is verified by the operation data of photovoltaic power plants in a certain area. As the results, the model has higher prediction accuracy, stronger generalization ability and stronger resistance to noise data.

关键词

XGBoost / 偏最小二乘 / 联合模型 / 光伏发电功率预测

Key words

XGBoost / partial least squares / combined model / photovoltaic power generation forecast

引用本文

导出引用
王献志, 曾四鸣, 周雪青, 陈天英, 郭少飞, 张卫明. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报. 2022, 43(4): 236-242 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0890
Wang Xianzhi, Zeng Sining, Zhou Xueqing, Chen Tianying, Guo Shaofei, Zhang Weipeng. POWER FORECAST OF PHOTOVOLTAIC GENERATION BASED ON XGBOOST COMBINED MODEL[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 236-242 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0890
中图分类号: TK513.5   

参考文献

[1] 吕鑫, 刘天予, 董馨阳, 等. 2019年光伏及风电产业前景预测与展望[J]. 北京理工大学学报(社会科学版), 2019, 21(2): 25-29.
LYU X, LIU T Y, DONG X Y, et al. Outlook and prospect of the photovoltaic and wind power industry in 2019[J]. Journal of Beijing Institute of Technology (social science edition), 2019, 21(2): 25-29.
[2] HICHEM H, CHIHEB B R, ABDERRAHMEN Z.A sliding-neural network control of induction-motor-pump supplied by photovoltaic generator[J]. Protection and control of modern power systems, 2020, 5(1): 1-17.
[3] 赵亮, 刘友波, 余莉娜, 等. 基于深度信念网络的光伏电站短期发电量预测[J]. 电力系统保护与控制, 2019, 47(18): 11-19.
ZHAO L, LIU Y B, YU L N, et al. Short-term power generation forecast of PV power station based on deep belief network[J]. Power system protection and control, 2019, 47(18): 11-19.
[4] ALMONACID, PEREZ P J, FERNANDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy conversion and management, 2014, 85: 389-398.
[5] 王继拓, 王万成, 陈宏伟.基于回归-马尔科夫链的光伏发电功率预测[J]. 电测与仪表, 2019, 56(1): 76-81.
WANG J T, WANG W C, CHEN H W.Photovoltaic power generation forecasting based on regression-Markov chain[J]. Electrical measurement & instrumentation, 2019, 56(1): 76-81.
[6] 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39(8): 2221-2230, 5.
ZHANG Q, MA Y, LI G L, et al. Applications of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J]. Proceedings of the CSEE, 2019, 39(8): 2221-2230, 5.
[7] 彭曙蓉, 郑国栋, 黄士峻, 等. 基于XGBoost算法融合多特征短期光伏发电量预测[J]. 电测与仪表, 2020,57(24): 76-83.
PENG S R, ZHENG G D, HUANG S J, et al. Multiple-feature short-term photovoltaic generation forecasting based on XGBoost algorithm[J]. Electrical measurement & instrumentation, 2020,57(24): 76-83.
[8] 李正明, 梁彩霞, 王满商.基于PSO-DBN神经网络的光伏短期发电出力预测[J]. 电力系统保护与控制, 2020, 48(8): 149-154.
LI Z M, LIANG C X, WANG M S.Short-term power generation output prediction based on a PSO-DBN neural network[J]. Power system protection and control, 2020, 48(8): 149-154.
[9] 丁坤, 丁汉祥, 王越, 等. 基于提升小波-BP 神经网络的光伏阵列短期功率预测[J]. 可再生能源, 2017, 35(4): 566-571.
DING K, DING H X, WANG Y, et al. Short-term power prediction of photovoltaic array based on lifting wavelet transform-BP neural network[J]. Renewable energy resources, 2017, 35(4): 566-571.
[10] 于秋玲, 许长清, 李珊, 等. 基于模糊聚类和支持向量机的短期光伏功率预测[J]. 电力系统及其自动化学报, 2016, 28(12): 115-118.
YU Q L, XU C Q, LI S, et al. Application of fuzzy clustering algorithm and support vector machine to short-term forecasting of PV power[J]. Proceedings of the CSU-EPSA, 2016, 28(12): 115-118.
[11] 时珉, 王强, 王铁强, 等. 基于特征筛选与ANFIS-PSO的分布式光伏发电功率预测方法研究[J]. 可再生能源, 2019, 37(7): 989-994.
SHI M, WANG Q, WANG T Q, et al. Short-term distributed photovoltaic forecasting based on ANFIS-PSO and feature selection[J]. Renewable energy resources, 2019, 37(7): 989-994.
[12] CHEN T Q, HE T.Higgs boson discovery with boosted trees[C]//JMLR: Workshop And Conference Proceedings, Proceedings of the NIPS 2014-4th Workshop on High-energy Physics and Machine Learning, Montreal, Quebec, Canada, 2014: 69-80.
[13] 刘波, 秦川, 鞠平, 等. 基于XGBoost与Stacking 模型融合的短期母线负荷预测[J]. 电力自动化设备, 2020, 40(3): 147-153.
LIU B, QIN C, JU P, et al. Short-term bus load forecasting based on XGBoost and Stacking model fusion[J]. Electric power automation equipment, 2020, 40(3): 147-153.
[14] 陈明华, 刘群英, 张家枢, 等. 基于XGBoost 的电力系统暂态稳定预测方法[J]. 电网技术, 2020, 44(3): 1026-1033.
CHEN M H, LIU Q Y, ZHANG J S, et al. XGBoost-based algorithm for post-fault transient stability status prediction[J]. Power system technology, 2020, 44(3): 1026-1033.
[15] 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2): 614-620.
CHEN Z Y, LIU J B, LI C, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power system technology, 2020, 44(2): 614-620.
[16] 刘吉臻, 曲亚鑫, 田亮, 等. 基于偏最小二乘回归的锅炉再热汽温建模[J]. 中国电机工程学报, 2011, 31(11): 99-105.
LIU J Z, QU Y X, TIAN L, et al. Modelling of utility boiler reheat steam temperature based on partial least squares regression[J]. Proceedings of the CSEE, 2011, 31(11): 99-105.
[17] 张越, 单连飞, 余建明, 等. 基于ε-模糊树方法的电力系统状态估计[J]. 电力系统保护与控制, 2019, 47(5): 138-144.
ZHANG Y, SHAN L F, YU J M, et al. Power system state estimation based on ε-fuzzy tree method[J]. Power system protection and control, 2019, 47(5): 138-144.
[18] 张文广, 张越.基于PLS和ε-FT的电站锅炉NOx排放特性研究[J]. 动力工程学报, 2017, 37(3): 186-191.
ZHANG W G, ZHANG Y.Study on NOx emission of utility boilers based on partial least squares and ε-fuzzy tree method[J]. Journal of Chinese Society of Power Engineering, 2017, 37(3): 186-191.

基金

河北省科技厅项目(19212102D)

PDF(1656 KB)

Accesses

Citation

Detail

段落导航
相关文章

/